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Abstract

In this paper, we intend to solve the problem of 

maximum-revenue multicast routing with a partial 

admission control mechanism for multirate multimedia 

distribution. Specifically, for a given network topology, 

a given link capacity, the destinations of a multicast 

group, and the bandwidth requirement of each 

destination, we attempt to find a feasible routing 

solution to maximize the revenue of the multicast trees. 

The partial admission control mechanism means that 

the admission policy of the multicast group will not be 

based on a traditional “all or none” strategy. Instead 

it considers accepting of partial portions of 

destinations for the requested multicast group. Firstly, 

we model this problem as an optimization problem. 

Then, we propose a simple heuristic algorithm and an 

optimization based heuristic to solve this problem. The 

methodology taken for solving the problem is 

Lagrangean relaxation. Computational experiments 

have been performed on regular networks, random 

networks, and scale-free networks.  

1. Introduction 

In order to support the advanced applications such 

as e-learning and video conference, it will be necessary 

for the service delivery infrastructure to provide 

multimedia services and multicast data delivery within 

guaranteed bounds of Quality-of-Service (QoS). 

Multimedia application environments are characterized 

by large bandwidth variations due to the heterogeneous 

access technologies of networks and different 

receivers’ quality requirements, which make it difficult 

to achieve bandwidth efficiency and service flexibility. 

There are many challenging issues that need to be 

addressed in designing architectures and mechanisms 

for multicast data transmission [1]. 

Taking advantage of recent advances in video 

encoding and transmission technologies, either by a 

progress coder [2] or video gateway [3] [4], different 

destinations can request a different bandwidth 

requirement from the source, after which the source 

only needs to transmit signals that are sufficient for the 

highest bandwidth destination into a single multicast 

tree. A multi-layered or multirate encoder encodes 

video data into more than one video stream, including 

one base layer stream and several enhancement layer 

streams. The base layer contains the most important 

portions of the video stream for achieving the 

minimum quality level. The enhancement layers 

contain the other portions of the video stream for 

refining the quality of the base layer stream. Reference 

[5] discusses the min-cost routing problem of multirate 

multicasting. 

In order to meet the requirements for multimedia 

distribution, network operators invest more and more 

capital to enlarge their network capacity. In addition to 

enlarging the network capacity, there is still one way to 

achieve the goal of revenue maximization, namely: 

network planning or traffic engineering. Traffic 

engineering is the process of controlling how traffic 

flows through a network in order to optimize resource 

utilization and network performance. At the same time, 

it can provide QoS. Admission control is often 

considered a by-product of QoS routing and resource 

reservation. If the latter is successfully performed 

along the route(s) selected by the routing algorithm, 

the connection request is accepted; otherwise, it is 

rejected. It is clear from the above introduction to 

know that in order to consider the QoS assurance issue, 

the three closely-related mechanisms of admission 

control, routing and resource reservation should be 

treated jointly. 

In this paper, we jointly considering the above three 

mechanisms and intend to solve the problem of 

maximum-revenue multicast routing with a partial 

admission control mechanism for multirate multimedia 

distribution. For multirate video distribution, which is 

different from the conventional Steiner tree problem, 

each receiver can request a different quality of video. 

This means that each link’s flow of the multicast tree is 

different and is dependent on the maximum rate of the 

receiver sharing the link. The partial admission control 

mechanism means that the admission policy of the 

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05) 

1550-445X/05 $20.00 © 2005 IEEE 



multicast group will not be based on a traditional “all 

or none” strategy. Instead it considers accepting of 

partial portions of destinations for the requested 

multicast group. More specifically, for a given network 

topology, a given link capacity, the destinations of a 

multicast group, and the bandwidth requirement of 

each multicast node, we attempt to find a feasible 

admission decision and routing solution to maximize 

the revenue of the multicast trees.  

The rest of this paper is organized as follows. In 

Section 2, we formally define the problem being 

studied, as well as a mathematical formulation of max-

revenue optimization is proposed. Section 3 applies 

Lagrangean relaxation as a solution approach to the 

problem. Section 4, illustrates the computational 

experiments. Finally, in Section 5 we present our 

conclusions and the direction of future research. 

2. Problem formulation 

The network is modeled as a graph where the 

switches are depicted as nodes and the links are 

depicted as arcs. A user group, which has one source 

and one or more destinations, is an application 

requesting transmission on this network. Given the 

network topology, the capacity of links and the 

bandwidth requirement of every destination of a user 

group, we want to jointly determine the following 

decision variables: (1) the routing assignment (a tree 

for multicasting, or path for unicasting) of each 

admitted destination; and (2) the admitted number of 

destinations of each partially admitted multicast group. 

We assume that the multicasting is multirate.  

Table 1. Description of notations
Given Parameters 

Notation Descriptions 

Fgq

Revenue generated from admitting partial users 

of multicast group g with propriety q, which is 

a function of fgq and agq

gqa Revenue generated from admitting multicast 

group g with propriety q

gd
Traffic requirement of destination d multicast 

group g

G The set of all multicast groups 

V The set of nodes in the network 

L The set of links in the network 

Q The set of priorities in the network 

Dg The set of destinations of multicast group g

Tgq
The set of destinations of priority q in multicast 

group g

Cl Capacity of link l

Iv The incoming links to node v

rg The multicast root of multicast group g

gr
I The incoming links to node rg

Pgd
The set of paths user d of multicast group g

may use 

pl
The indicator function which is 1 if link l is on 

path p and 0 otherwise 

qg
The indicator function which is 1 if priority q is

selected for destination d and 0 otherwise 

Decision Variables 

Notation Descriptions 

xgpd
1 if path p is selected for group g destined for 

destination d and 0 otherwise. 

ygl
1 if link l is on the subtree adopted by multicast 

group g and 0 otherwise. 

mgl

The maximum traffic requirement of the 

destination in multicast group g that are 

connected to the source through link l.

fgq
The number of admitted destinations of priority

q in multicast group g.

By formulating the problem as a mathematical 

programming problem, we intend to solve it optimally 

to obtain a network that fits into our goal, i.e., ensures 

the network operator can earn maximum revenue from 

servicing the partially admitted destinations. 

This model is based on the following viable 

assumptions. 

The revenue from each partially admitted group 

can be fully characterized by two parameters: the 

entire admitted revenue of the group associated 

with specific priority and the number of admitted 

destinations of specific priority. 

The revenue from each partially admitted group 

associated with specific priority is a monotonically 

increasing function with respect to the number of 

admitted destinations of specific priority. 

The revenue function from each partially admitted 

group associated with specific priority is a concave 

function with respect to the entire admitted revenue 

of the group associated with specific priority and 

the number of admitted destinations of specific 

priority. However, the entire admitted revenue and 

the number of admitted destinations jointly may not 

be a concave function. 

The revenue from each partially admitted group 

associated with specific priority is independent. 

The notations used to model the problem are listed 

in Table 1. 

Optimization Problem: 

Objective function: 

min  ( , )gq gq gq

g G q Q

F a f                         (IP)

subject to: 

gd

gd gpd pl gl

p P

x m , ,gg G d D l L (1)
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gl l

g G

m C Ll (2)

[0,max ]gl gd
d D

m ,g G l L (3)

g gd

gl gpd

l L d D p P

y x Gg (4)

g gd

gpd pl g gl

d D p P

x D y ,g G l L (5)

1
v

gl

l I

y , { }gg G v V r (6)

0
rg

gl

l I

y g G (7)

0 or 1gpdx , ,gd gg G p P d D (8)

g gd

gpd qd gq

d D p p

x f ,g G q Q (9)

{0,1, 2,......, }gq gqf T ,g G q Q (10)

0 or 1gly ,l L g G (11)

1
gd

gpd

p P

x , gg G d D (12)

The objective function of (IP) is to maximize the 

total revenue Fqg of servicing the partially admitted 

destinations in multicast group g associated with 

specific priority, where g G, q Q and G is the set of 

user groups requesting transmission. Fgq reflects the 

priority of partial users belonging to group g, while 

different choices of Fgq may provide different physical 

meanings of the objective function. For example, if Fgq

is chosen to be the mean traffic requirement of partial 

users belonging to group g associated with priority q,

then the objective function is to maximize the total 

system throughput. In general, if user group g with 

priority q is to be given a higher importance, then the 

corresponding Fgq may be assigned a larger value.  

Constraint (1) and (2) are the capacity constraint. In 

this model, the variable mgl can be viewed as the 

estimate of the aggregate flows. Since the object 

function is strictly decreasing with mgl and (IP) is a 

maximization problem, each mgl will exactly equal to 

the aggregate flow in an optimal solution. Constraint 

(3) is a redundant constraint which provides upper and 

lower bounds on the maximum traffic requirement for 

multicast group g on link l. Constraint (4) requires that 

if one path is selected for group g destined for 

destination d, it must also be on the subtree adopted by 

multicast group g. Constraint (5) is the tree constraint, 

which requires that the union of the selected paths for 

the destinations of user group g forms a tree. 

Constraints (4) and (6) require that the number of 

selected incoming links ygl is 1 or 0 and each node, 

excepting the root, has only one incoming link. 

Constraint (6) requires that the number of selected 

incoming link ygl to node is 1 or 0. Constraint (7) 

requires that there is no selected incoming link ygl that 

is the root of multicast group g. As a result, the links 

we select can form a tree. Constraint (8) and (12) 

require that at most one path is selected for each 

admitted multicast source-destination pair, while 

Constraint (9) relates the routing decision variables xgpd

to the auxiliary variables fgq. Constraint (10) requires 

that the number of admitted destinations in multicast 

group g with priority q is the set of integers. 

3. Solution procedure 

3.1. Lagrangean relaxation 

 Lagrangean method has become one of the best 

tools for optimization problems such as integer 

programming, linear programming combinatorial 

optimization, and non-linear programming [6]. By 

adjusting the multiplier of Lagrangean relaxation, we 

can obtain the upper and lower bounds of this problem. 

The Lagrangean multiplier problem can be solved in a 

variety of ways. The subgradient optimization 

technique is possibly the most popular technique [6] 

[7]. By using the Lagrangean Relaxation method, we 

can transform the primal problem (IP) into the 

following Lagrangean Relaxation problem (LR) where 

Constraints (1) (4) (5) and (9) are relaxed. For a vector 

of Lagrangean multipliers, a Lagrangean Relaxation 

problem of (IP) is given by 

Optimization problem (LR):
( , , , )

min  ( , )
g gd

g g gd

g gd

D

gq gq gq gdl gd gpd pl

g G q Q g G l L d D p P

gdl gl g gl g gpd

g G d D l L g G l L g G d D p P

gl gpd pl gl g gl

g G l L d D p P g G l L

Z

F a f x

m y x

x D y

g gd

gp gpd qd gq gq

g G q Q d D p P g G q Q

x f

subject to: (2)(3)(6)(7)(8)(10)(11)(12)

where gdl, g, gl and gq are Lagrangean multipliers 

and gd, gl 0. To solve (LR), we can decompose (LR) 

into the following four independent and easily solvable 

optimization subproblems. 

Subproblem 1: (related to decision variable xgpd)

1( , , , )

min  ( ( ) )
g gd

Sub

pl gdl gd gl g gd g gpd

g G d D p P l L q Q

Z

x

subject to: (8)(12). 

The Subproblem 1 is to determine xgpd and it can be 

further decomposed into |G||Dg| independent shortest 

path problems with nonnegative arc weights gdl gd+ gl.

If the shortest cost plus coefficient 
g gd gq Q

is no 
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more than 0, than assign the corresponding xgpd to 1, 

and 0 otherwise.

Subproblem 2: (related to decision variable ygl)

2 ( , ) min  ( )Sub g gl g gl

g G l L

Z D y

subject to: (6)(7)(11). 

The Subproblem 2 can be decomposed into |G| 

independent problems. The algorithm to solve to 

Subproblem 2 is stated as follows:  

1. Compute the coefficient g- gl|Dg| for all links in 

the multicast group g.

2. Sort the links in ascending order according to the 

coefficient.

3. According to the order and complying with 

constraints (6) and (7), if the coefficient is less 

than zero, assigns the corresponding negative 

coefficient of ygl to 1; otherwise 0. 

Subproblem 3: (related to decision variable fgq)

3 ( ) min  ( ( , ) )Sub gq gq gq gq gq

g G q Q

Z F a f f

subject to: (10). 

We can easily solve Subproblem 3 optimally by 

exhaustively searching from the known set of fgq.

Subproblem 4: (related to decision variable mgl)

4 ( ) min  ( ( ) )
g

Sub gdl gl

l L g G d D

Z m

subject to: (2)(3). 

We can decompose Subproblem 4 into |L| independent 

problems. The algorithm to solve Subproblem 4 is:  

Step 1 Compute 
g

gdld D

 for link l of multicast 

group g.

Step 2 Sort the negative coefficient 
g

gdld D
from 

the smallest value to the largest value 

Step 3 According the sorted sequence. <i> assigns the 

corresponding mgl to the maximum traffic 

requirement in the multicast group and adds to 

the sum value until the total amount of 

maximum traffic requirements on link l is less 

than the capacity of link l. <ii> assign the 

boundary negative coefficient of mgl to the 

difference between the capacity on link l and 

the sum value of mgl, <iii> assign the other 

coefficients of mgl to 0. 

According to the weak Lagrangean duality theorem 

[6], for any gdl, gl 0, ZD( gdl, g, gl, gq) is a lower 

bound on ZIP. The following dual problem (D) is then 

constructed to calculate the tightest lower bound. 

Dual Problem (D): 

Dmax ( , , , )D gdl g gl gqZ Z

subject to: gdl, gl 0.

There are several methods for solving the dual 

problem (D). The most popular is the subgradient 

method [8], which is employed here.  

3.2. Getting primal feasible solutions 

After optimally solving the Lagrangean relaxation 

problem, we get a set of decision variables. However, 

this solution would not be a feasible one for the primal 

problem since some of constraints are not satisfied. 

Thus, minor modification of decision variables, or the 

hints of multipliers must be taken, to obtain the primal 

feasible solution of problem (IP). Generally speaking, 

the best primal feasible solution is an upper bound (UB) 

of the problem (IP), while the Lagrangean dual 

problem solution guarantees the lower bound (LB) of 

problem (IP). Iteratively, by solving the Lagrangean 

dual problem and getting the primal feasible solution, 

we get the LB and UB, respectively. So, the gap 

between UB and LB, computed by (UB-

LB)/LB*100%, illustrates the optimality of problem 

solution. The smaller gap computed, the better the 

optimality. 

Here we propose a comprehensive, two-part method 

to obtain a primal feasible solution. It utilized a 

Lagrangean multipliers based heuristic, followed by 

adjustment procedures. While solving the Lagrangean 

relaxation dual problem, we may get some multipliers 

related to each OD pair and links. According to the 

information, we can make our routing more efficient. 

We describe the Lagrangean based heuristic below. 

[Lagrangean Multipliers based heuristic] 

Step 1 Use g- gl|Dg| as link l’s arc weight and run the 

M-T-M heuristic [10] to get a spanning tree 

for each multicast group. 

Step 2 Drop procedures:

2.1 Check the capacity constraint of each link. 

If there is a link violate the capacity 

constraint, go to Step 2.2, otherwise Step 

3.

2.2 Sort the links in descending order 

according to {Cl – the aggregate flow on 

the link}. Choose the maximal overflow 

link and drop the group with the maximal 

subgradient (-Fgq(agq,fgq)- gqfgq). Go to 

Step 2.1. 

Step 3 Add procedures:

3.1 Sort the dropped group in ascending order 

according to the subgradient (-Fgq(agq,fgq)-

gqfgq).

3.2 In accordance with the order, re-add the 

groups to the network. Use g- gl|Dg| as 
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link l’s arc weight, removes the overflow 

links from the graph and run the M-T-M 

heuristic. If it can not find a route for the 

destinations, drop the destinations. 

4. Computational experiments 

In this section, computational experiments on the 

Lagrangean relaxation based heuristic and other primal 

heuristics are reported. The heuristics are tested on 

three kinds of networks - regular networks, random 

networks, and scale-free networks.  

(a) grid network        (b) cellular network

Figure 1. Regular networks

Two regular networks shown in Figure 1 are tested 

in our experiment. The first one is a grid network that 

contains 100 nodes and 180 links, and the second is a 

cellular network containing 61 nodes and 156 links. 

Random networks tested in this paper are generated 

randomly, each having 100 nodes. The candidate links 

between all node pairs are given a probability 

following the uniform distribution. In the experiments, 

we link the node pair with a probability smaller than 

2%. Reference [9] shows that the scale-free networks 

can arise from a simple dynamic model that combines 

incremental growth with a preference for new nodes to 

connect to existing ones that are already well 

connected. In our experiments, we applied this 

preferential attachment method to generate the scale-

free networks. The number of nodes in the testing 

networks is 100. 

In order to prove that our heuristics are good 

enough, we also implement a simple algorithm to 

compare with our heuristic. 

[Simple Algorithm] 

Step 1 Set link l’s arc weight to 1 and run the M-T-M 

heuristic to get a spanning tree for each 

multicast group. 

Step 2 Drop procedures:

2.1 Check the capacity constraint of each link. 

If there is a link violate the capacity 

constraint, go to Step 2.2, otherwise Step 

3.

2.2 Sort the links in descending order 

according to {Cl – the aggregate flow on 

the link}. Choose the maximal overflow 

link and drop the nodes of group which 

have maximum flow on that link. Go to 

Step 2.1. 

Step 3 Add procedures:

3.1 Sort the dropped group in ascending 

order according to the group ID and node 

ID.

3.2 In accordance with the order, re-add the 

groups to the network. Remove the 

overflow links from the graph, set each 

link’s arc weight to the aggregate flow of 

the link and run the M-T-M heuristic. If it 

can not find a feasible route for the 

destinations, drop the destinations. 

For each testing network, several distinct cases, 

which have different pre-determined parameters such 

as the link capacity, the number of multicast group and 

the number of nodes in a group, are considered. The 

traffic demands for each multicast group are drawn 

from a random variable uniformly distributed in pre-

specified categories {1, 2, 5, 10, 15, 20}. We 

conducted 120 experiments for each kind of network. 

For each experiment, the result was determined by the 

group source and destinations generated randomly. 

Table 2 summaries the selected results of the 

computational experiments. For each testing network, 

the maximum improvement ratio between the simple 

heuristic and the Lagrangean based heuristic is 14.42 

%, 23.73%, 22.70 %, and 25.22%, respectively. In 

general, the Lagrangean based heuristic performs well 

compared to the simple heuristic. We also find that in 

less congested network, either with less groups or 

destinations, the Lagrangean based heuristic 

outperforms the simple heuristic such as the case A of 

cellular network and case B of scale-free network.

There are two main reasons of which the 

Lagrangean based heuristic works better than the 

simple algorithm. First, the Lagrangean based heuristic 

makes use of the related Lagrangean multipliers which 

include the potential cost for routing on each link in 

the topology. Second, the Lagrangean based heuristic 

is iteration-based and is guaranteed to improve the 

solution quality iteration by iteration. Therefore, in a 

more complicated testing environment, the 

improvement ratio is higher. To claim optimality, the 

results show that most of the cases have a gap of less 

than 40%. We also found that the simple heuristic 

performs well in many cases, such as the case B of grid 

network and case D of cellular network. 

5. Conclusions 

In this paper, we attempt to solve the problem of 

capacitated max-revenue multicast routing and partial 
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admission control for multirate multimedia distribution. 

Our achievement of this paper can be expressed in 

terms of mathematical formulation and experiment 

performance. In terms of formulation, we propose a 

precise mathematical expression to model this problem 

well. In terms of performance, the proposed 

Lagrangean based heuristic outperforms the simple 

heuristics. Our model can be extended to deal with the 

QoS constrained multicast routing and admission 

control problem by adding delay constraints. These 

issues will be addressed in future works. 
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Table 2. Selected results of computational experiments
CASE  Cap. G # N # SA UB LB GAP Imp. 

Grid Network Max Imp. Ratio: 14.42 %

A 20 20 20 -4049.86 -4615.56 -6279.5 26.50% 13.97%

B 20 20 50 -6892.2 -7413.97 -12741.7 41.81% 7.57%

C 20 50 20 -6995.97 -7861.03 -12495.7 37.09% 12.37%

D 20 50 50 -13198.5 -14230.2 -25305.7 43.77% 7.82%

E 20 100 20 -11141.4 -12747.9 -20387.3 37.47% 14.42%

F 20 100 50 -20751 -22121.2 -39519.2 44.02% 6.60%

Cellular Network Max Imp. Ratio: 23.73 %

A 20 20 20 -2942.85 -3641.11 -4943.33 26.34% 23.73%

B 20 20 50 -6351.08 -7452.4 -11600.9 35.76% 17.34%

C 20 50 20 -7810.42 -8790 -13495.9 34.87% 12.54%

D 20 50 50 -14639.3 -15328.1 -27179.5 43.60% 4.71%

E 20 100 20 -11266.4 -12719.4 -20488 37.92% 12.90%

F 20 100 50 -23083.9 -23471.7 -42124.5 44.28% 1.68%

Random Networks Max Imp. Ratio: 22.70 %

A 20 20 20 -4192.43 -4927.5 -6104.6 19.28% 17.53%

B 20 20 50 -9366.11 -11492.2 -13222 13.08% 22.70%

C 20 50 20 -9111.25 -11073.7 -14217.8 22.11% 21.54%

D 20 50 50 -17207.1 -20381.1 -30306.7 32.75% 18.45%

E 20 100 20 -17614 -20959.7 -27758 24.49% 18.99%

F 20 100 50 -39313.6 -45728.5 -64584.5 29.20% 16.32%

Scalefree Network Max Imp. Ratio: 25.22 %

A 20 20 20 -3380.06 -4120.19 -5075.61 18.82% 21.90%

B 20 20 50 -6662.23 -8342.77 -12229.2 31.78% 25.22%

C 20 50 20 -6714.48 -8176.26 -11380.1 28.15% 21.77%

D 20 50 50 -12933.3 -15112.9 -24120.7 37.34% 16.85%

E 20 100 20 -12276.8 -14648.1 -20221.3 27.56% 19.32%

F 20 100 50 -21033.6 -25898.6 -37790.4 31.47% 23.13%

Cap.: The capacity of each link 

G#: The number of multicast group 

N#: The number of destinations in each multicast group 

SA: The result of the simple algorithm 

UB: Upper bounds of the Lagrangean based heuristic 

LB: Lower bounds of the Lagrangean based heuristic 

GAP: The error gap of the Lagrangean relaxation 

Imp.: The improvement ratio of the Lagrangean based heuristic 
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