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Abstract+ 

 
With the prevalence and varied applications of the 

Internet, new cyber-crimes are mushrooming all over 

cyberspace. The crimes are characterized by their “silent” 

attack behavior, which enables an attacker to exploit the 

vulnerabilities of a system and steal information, without 

actually crashing the system. Information theft is a 

relatively new cyber-crime that not only causes property 

damage and monetary loss to its victims, but can also ruin 

their reputations. 

To detect and analyze the serious impact of 

information theft, we model it as a mathematical 

programming problem, defined by the AS model. In the 

model, an attacker applies his limited attack power 

intelligently to the targeted network in order to steal as 

much valuable information as possible. A Lagrangean 

relaxation-based algorithm is adopted to solve the AS 

problem, and the “susceptibility” metric is used to 

evaluate the effect of the attack. 

 

Keywords: Information Theft, Lagrangean Relaxation, 

Network Attack, Optimization Problem, Resource 

Allocation, Scale-free Networks. 

 

 

1. Introduction 
 

With the prevalence and varied applications of the 

Internet, new cyber-crimes are mushrooming all over 

cyberspace. Unlike attackers in the past, who tried to 

crash a whole network or interrupt a system’s normal 

services, attackers now tend to exploit the vulnerabilities 
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of a system and steal information, without actually 

crashing the system. Information theft is a relatively new 

cyber-crime characterized by this “silent” attack behavior. 

It not only causes property damage and monetary loss to 

its victims, but can also ruin their reputations. 

Since an attack does not affect normal network 

operations, an occurrence can easily be missed. Usually, 

it is too late when the victim realizes that a network or 

system has been compromised because the damage has 

been done. To prevent such occurrences, network 

operators can invest some resources to enhance the 

robustness of the whole network. However, since 

resources are limited, it is impossible to make a network 

entirely attack-proof; thus, a network operator must 

allocate his limited resources effectively. 

Before determining the best defense resource 

allocation strategy, we must first consider the best attack 

strategy. This is a case of “know your enemy and know 

yourself.” Previous research has shown that attempts to 

model attackers’ actions in an abstract, mathematical way 

and then predict the attackers’ future tactics based on 

those models is a non-trivial and unsolved issue [1, 2]. 

Therefore, in this paper, we model the attacker’s behavior 

as a mathematical formulation, and compare the 

robustness of different network topologies under different 

defense budget allocation strategies against malicious 

attacks. 

 

2. Attack Scenario and Problem 

Formulation 

 
2.1. Problem Description 

 

Because an attacker’s resources, i.e., time and money, 

are limited, only part of a network can be compromised. 



 

Therefore, the resources must be fully utilized so that the 

attacker can gain the most valuable information that will 

cause the maximum harm to the network operator. 

Of course, the reward an attacker can gain may 

change when the defense resource allocation strategy 

changes. Hence, to evaluate the efficiency of an attack 

under different defense strategies, we analyze the 

susceptibility of the network. The susceptibility metric, 

shown in the Equation 1, is defined as the percentage of 

stolen information. It is assumed that the attacker can 

steal all the information held by a node once the node is 

compromised successfully. Assume that di is the value of 

information held by node i, where i∈N.  

   

    

(%) = ( ) 100%

i

i nodes that are compromised

j

j all nodes in the network

d

Susceptibility
d

∈

∈

×

∑

∑
    (1)  

Note that the network we discuss here is at the AS 

level.  

 
2.2. Problem Formulation of the AS Model 

 

The attack scenario is as follows. Initially, the attacker 

controls one node that connects directly to the targeted 

network, and that node is viewed as the initial hop-site to 

reach other nodes. Since the targeted network is at the AS 

level, the attacker cannot simply attack any node directly. 

Instead, he can only reach uncompromised nodes from 

their immediate compromised neighbors. Thus, the 

attacker needs to construct an attack tree, i.e., a tree 

consisting of compromised nodes and rooted at the initial 

hop-site. To consider the worst case scenario, we assume 

the attacker is smart enough to obtain complete 

information about the targeted network in advance. 

The effort needed to compromise a node depends on 

the resources allocated to defend the node. Generally, the 

more defense resources a node has, the more robust it is. 

However, a node still has some defense capability, even if 

no defense resources are allotted to it, since the node 

itself is a shell for protecting the information. On the 

other hand, the total attack resources are limited by the 

allocated budget. Our objective is to understand how an 

attacker can distribute his limited resources effectively 

and intelligently in order to maximize his benefit. To 

achieve our objective, we formulate the above problem as 

a maximization mathematical model (AS model).  

 

Table 2-1 Given parameters of the AS model 

Notion Description 

N The index set of all nodes in the network 

W 

The set of all O-D pairs, where the origin is 

node s; and the destinations are the nodes with 

positive di , where i, s∈N 

di 
Damage incurred by compromising node i, 

where i∈N 

Pw 
The index set of all candidate paths of an O-D 

pair w, where w∈W 

A The total attack power 

ˆ ( )
i i
a b  

The threshold of the attack power required to 

compromise node i, i.e., the defense capability 

of node i, where i∈N 

δpi 

An indicator function, which is 1 if node i is 

on path p; and 0 otherwise (where i∈N, p∈ 
Pw) 

 

Table 2-2 Decision variables of the AS model 

Notion Description 

ai Attack power applied to node i, where i∈N 

yi 
1 if node i is compromised; and 0 otherwise 

(where i∈N) 

xp 
1 if path p is selected as the attack path; and 0 

otherwise (where p∈ Pw) 
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The objective of the formulation is to maximize the 

total value of the information stolen. Constraints (IP 1.1) 

~ (IP 1.5) jointly require that, when a node is chosen for 

attack, there must be exactly one path from the attacker’s 

initial position, s, to that node, and each node on the path 

must have been compromised. These constraints are 

jointly described as the “continuity constraints.” The 

above formulation can be viewed as a 0-1 knapsack 

problem with continuity constraints, where each node 

represents an item, and the node’s information value and 

defense capability are the item’s profit and weight 

respectively.  

 

3. Solution Approach 

 
3.1. Lagrangean Relaxation-based Algorithm 

 

We propose a Lagrangean relaxation-based algorithm 

[3], which we denote as LR, in conjunction with the 

subgradient method [3] to solve the AS model. To 



 

achieve better results, a two-stage Lagrangean relaxation 

procedure is adopted. In the first stage, we relax 

Constraints (IP 1.1), (IP 1.2), and (IP 1.8), and construct a 

Lagrangean relaxation problem (LR 1). In the second 

stage, (IP 1) is transformed into another Lagrangean 

relaxation problem (LR 2) by relaxing Constraints (IP 

1.1), (IP 1.2), and (IP 1.7).  

The relaxed problems are then solved optimally to get 

a lower bound for the primal problem. After solving (LR 

1), the resulting bounds are taken as the initial bounds in 

the second stage. Two heuristics are adopted to derive 

feasible solutions to the primal problem, and the 

subgradient method is used to update the Lagrangean 

multipliers. The time complexity of each iteration in the 

LR procedure is O(|N|log
2
|N|). 

 

3.2. First-Stage Relaxation 
 

Lagrangean relaxation problem 
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We decompose (LR 1) into three independent and 

easily solvable optimization subproblems with respect to 

decision variables xp, yi, and ai, and solve the respective 

subproblems optimally. 

 

Getting primal feasible solutions 

Solutions to (LR 1) and their associated Lagrangean 

multipliers are considered in order to obtain a primal 

feasible solution for (IP 1). The concept of the proposed 

heuristic, denoted as Heuristic_LR_1, is described below.  

The main concept of this greedy-based heuristic arises 

from the attacker’s strategy of compromising nodes with 

smaller weights but moderate path costs in order to 

maximize the gain. Thus, only attack paths comprised of 

activated nodes, i.e., nodes with smaller weights, will be 

constructed. The total computational complexity of this 

heuristic is O(|N|log
2
|N|). 

 

Table 3-1 Heuristic_LR_1 Algorithm 

1. Set each node i as inactive and assign it with 

weight 
2

2

ˆ ( )
m a x ( 0 , )

( ) /

i i i

i i i

a b N

d d a

µ+

+

. Sort all 

nodes by their weights in ascending order. 

2. Take source s as the root of the attack tree. 

3. Activate the first half of the inactive nodes. 

4. Use Prim’s algorithm to construct the 

minimum cost sub-spanning tree for the 

activated nodes rooted at s. 

5. Examine each activated and uncompromised 

node. If its path cost is affordable for the 

attacker, apply sufficient attack power to 

compromise the node and all other 

uncompromised nodes on its path; then add 

all the nodes to the attack tree. 

6. Repeat Steps 3 to 5 until the attacker has 

insufficient attack resources to compromise 

any node. 

 

3.3. Second-Stage Relaxation 
 

Lagrangean relaxation problem 
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We decompose (LR 2) into three independent and 

easily solvable optimization subproblems with respect to 

decision variables xp, and [yi, ai], and solve the respective 

subproblems optimally. 

 

Getting Primal Feasible Solutions 
To improve the solution quality of (IP 1), we design 

and implement a heuristic while solving (LR 2). In this 

heuristic, each solution to (LR 2) is adjusted to a feasible 

solution to (IP 1). The basic concept of the heuristic, 

denoted as Heuristic_LR_2, is described below. 

The subproblem related to variable xp states that if the 

value of xp is 1, an attack path is constructed, and all 

nodes on the path are targeted. By taking the union of 

constructed attack paths, we can form an attack tree. Then 

the attack tree can be adjusted to a feasible solution to (IP 

1). 

The time complexity of the first case is O(|N|log|N|), 

and that of the second case is O(|N|
2
).  

 

Table 3-3 Heuristic_LR_2 Algorithm 

1. Assign each node i with weight 
2

2

ˆ ( )
m ax ( 0 , )

( ) /

i i i

i i i

a b N

d d a

µ+

+

. 

2. Examine all attack paths, i.e., paths whose value 

of xp is 1, and add all nodes on the paths to the 

attack tree. 

3. Calculate the total cost of the resulting attack 

tree. 

4. If the total cost of the attack tree does not 

exceed the total attack budget: 

4.1 Use Prim’s algorithm to construct the minimum 



 

cost spanning tree on the basis of the current 

attack tree. 

4.2 Find the uncompromised node with the smallest 

weight. Apply sufficient attack power to 

compromise the node if the attacker can 

construct an attack path to it. Then add the 

attack path to the attack tree. 

4.3 Repeat Step 4.2 until the attacker has 

insufficient resources to compromise any node. 

5. If the total cost of the attack tree exceeds the 

total attack budget: 

5.1 Find the leaf node of the attack tree with the 

largest weight. Remove it from the attack tree 

and withdraw the attack resource applied to it 

before. 

5.2 Repeat Step 5.1 until the attack cost of the 

whole attack tree is affordable. 

 

4. Computational Experiments 

 
4.1. Computational Experiments with the AS 

Model 
 

To demonstrate the effectiveness of the proposed 

heuristics, we implement the following algorithms for 

comparison purposes. The weight of each node is set to 

2

ˆ ( )

( )

i i

i

a b

d

 in the algorithms. 

 

Simple Algorithm 1 

The concept is derived from the heuristic of first-stage 

Lagrangean relaxation.  

 

Simple Algorithm 2 
The concept is based on the idea that nodes with 

smaller weights are more likely to be attacked. Here, we 

adopt Prim’s algorithm to predetermine the path from s to 

each node.  

 

Simple Algorithm 3 

In order to compare the attack performance under 

conditions of complete and incomplete information, here 

we focus on the scenario where the attacker is only aware 

of the existence of uncompromised nodes through their 

compromised neighbors. The algorithm is based on the 

greedy method, and the total computational time of this 

heuristic is O(|N|log|N|). 

 

4.2. Experiment Environment 
 

The proposed algorithms for the AS model are coded 

in Visual C++ and run on a PC with an INTEL
TM
 Pentium 

4.3GHz CPU. The parameters used in the experiments are 

detailed below. 

 

Table 4-4 Experiment parameter settings for the AS 

model 

Parameters Value 

Testing 

Topology 

Grid (square), Random, 

Scale-free [4] 

Number of 

Nodes |N| 

100, 400, 900 

Total Defense 

Budget 

Equal to Number of Nodes 

Total Attack 

Budget A 

Equal to Total Defense Budget 

Damage 

Distribution 

Random distribution (D1), 

Degree-based distribution (D2), 

Uniform distribution (D3) 

Budget 

Allocation 

Strategy 

Uniform allocation (B1), 

Degree-based allocation (B2), 

Damage-based allocation (B3) 

Defense 

Capability 

ˆ ( )
i i
a b  

ˆ ( )
i i
a b  = 2bi  + ε, bi is the 

budget allocated to node i, 

i N∀ ∈  

 
4.3. Experiment Results 

 

To compare attack behavior under different scenarios, 

we use the network susceptibility metric to evaluate the 

degree to which the attacker’s objective is achieved. The 

greater the susceptibility, the more successful the attack. 

The LR value means the susceptibility calculated by the 

optimal feasible solution derived by the Lagrangean 

relaxation process. The LB value is a lower bound on LR, 

obtained from the smaller one of (LR 1) and (LR 2); and 

SA1, SA2, and SA3 are the susceptibilities derived by 

simple algorithms 1, 2, and 3 respectively.  
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Figure 4-1 Susceptibility of medium-sized networks 

under different scenarios (|N| = 100) 
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Figure 4-2 Susceptibility of large networks under 

different scenarios (|N| = 400) 
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Figure 4-3 Susceptibility of extra-large networks 

under different scenarios (|N| = 900) 
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Figure 4-4 Susceptibility of different network sizes 

and damage distribution 
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Figure 4-5 Susceptibility of different network sizes 

and topologies 

 

4.4. Discussion of Results 
 

Figures 4-1 to 4-4 show the susceptibility of the 

targeted network under different topology types, numbers 

of nodes, and damage distribution patterns. From these 

figures, we observe: 

• Networks with budget allocation strategy B3 are the 
most robust and therefore the most difficult for an 

attacker to compromise. This finding is consistent 

with the common idea that defense resources should 

be allocated according to the importance of each 

node. 

• For grid networks, the network susceptibility of the 
B1 and B2 strategies is close, and the gap between 

them decreases with the growth of the networks. This 

is because the degree of most nodes in a grid network 

is four, and the average degree approaches four when 

the network size increases. 

• In random and scale-free networks, the average 

degree and the actual degree of each node diverge 

because of their randomness and power-law degree 

distribution characteristic [4] respectively. Thus, the 

B1 strategy, which treats each node equally, fails to 

reflect the discrepancy between the nodes, and results 

in high network susceptibility.  

• Networks under the D3 scenario have the lowest 
susceptibility of the three damage distribution patterns. 

This result indicates that a network is more robust if 

“all nodes are created equal”. 

 

Figure 4-5 compares the solution quality of the 

proposed Lagrangean relaxation-based algorithm with 

simple algorithms 1, 2, and 3, and demonstrates the gap 

between LRs and LBs. From the figure, we observe: 

• Our proposed heuristic outperforms the three simple 

algorithms in all cases. Our attack strategy causes the 

highest network susceptibility. This indicates that the 

proposed Lagrangean relaxation-based algorithm is 

not only capable of solving the AS model, it is also 

applicable to various types of network topology. The 

gaps between LRs and LBs are small, which shows 

that the proposed approach can derive a near-optimal 

solution to the AS model. 

• Simple algorithm 2 performs very well in grid 

networks, but fails in scale-free networks. This 

strategy is only useful when there are multiple paths 

between the source and the target, as the attacker can 

make a detour when encountering nodes with a high 

defense capability. However, in the case of scale-free 

networks, the existence of “hubs”, i.e., highly 

connected nodes [5], reduces the efficiency of simple 

algorithm 2, leading the rapid consumption of the 

attack budget. 

• Simple algorithm 3 performs reasonably well in all 

types of network, especially scale-free networks. Due 

to this algorithm’s local-information-awareness 

property, its solution quality is theoretically worse 

than that of the other algorithms. However, it turns 

out to be the opposite. One possible reason is that 

when an attacker has too much information, he may 

not be able to fully utilize it to develop a perfect 

attack strategy. On the other hand, the “six degrees of 

separation” property of scale-free networks allows an 

attacker to collect complete information about the 

targeted network once he has compromised several 

hub nodes. 

• Generally, scale-free networks are more susceptible to 

attack than the other two topologies; grid networks 

are the least susceptible. Our finding that scale-free 

networks are more vulnerable to malicious attacks is 

consistent with previous research [5]. In contrast, the 

regular structure of a grid network makes it difficult 

for an attacker to compromise valuable nodes 

arbitrarily. 

 

5. Conclusion and Future Work 

 



 

5.1. Conclusion 
 

The ubiquitous nature of the Internet has made it a 

magnet for cyber-crimes, which render the concept of 

“completely secure systems and networks” obsolete. 

Information theft is one of the most damaging 

cyber-crimes, yet it is easily missed because its attack 

behavior does not alert victims. Thus, in this paper we 

have considered the attack scenario in terms of 

information theft, where an attacker attempts to steal 

information from a targeted network and maximize his 

profit. 

The key contribution of this work is that we 

successfully model the “silent” attack behavior into a 

well-formulated mathematical model, which is then 

solved by the proposed heuristic. This is a great stride in 

the topic of network attacks, since previous research 

seldom modeled real-world attack behavior in this way. 

Using mathematical forms, we can induce generic results 

and apply them to similar real-world scenarios that were 

only addressed by individual case studies in the past. 

The novel network susceptibility metric is another 

contribution of this paper. The metric reflects the amount 

of profit gained by an attacker. This enables both the 

attacker and the defender to gauge the susceptibility of 

the targeted network and adjust their strategies 

accordingly. We have also studied several different 

network topologies and observed their susceptibility to 

information theft under different defense resource 

allocation strategies. The experiment results show that 

grid networks are the least susceptible to such theft, while 

scale-free network are the most susceptible.  

 

5.2. Future Work 
 

In this research, we adopt a linear defense capability 

function in the computational experiments. However, 

according to the “Law of Diminishing Marginal Utility”, 

the marginal benefit, i.e., the additional defense capability 

derived from an additional unit of defense budget, 

declines as the defense budget increases. Thus, concave 

functions, e.g., log functions, may describe the real 

situation more accurately. 

The current research only considers the best attack 

strategy under given defense strategies, but it would be 

more comprehensive if both strategies were considered 

simultaneously. Thus, the issue could be viewed as an 

offense-defense game and modeled as a two-level 

mathematical optimization problem, where the objective 

of the attacker is to maximize the total damage incurred 

by compromising nodes in a network, while the defender 

tries to minimize the total damage. 
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