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Abstract-Faults are an essential fact in wireless sensor net-

working as coupled with a set of constraints. The decision mak-
ing based on the reports of fragile and fallible sensor nodes 
might be very unreliable and, therefore, might fail to accom-
plish the tasks of WSNs. Previously, the reduction in the effects 
of faults is based on collaborative effort of a large number of 
sensor nodes. The collaborative work may consume valuable 
power and may fail as sensor nodes are severely affected by 
environmental interference. In this paper, instead of the 
neighborhood communication and pure data fusion, the col-
laborative effort in decision making is accomplished based on 
the fault probability estimation, reading variance estimation, 
and critical value adjustment. The fault probability of sensor 
nodes is computed by their reports and the t-out-of-n rule to 
make reliable decisions. The reading variance is estimated by 
well-known sample variance to assess the effects of environ-
mental interference. The critical value adjustment is triggered 
as estimated reading variance changed, high fault probability, 
or decision quality unsatisfied to reduce the bias of fault prob-
ability. 

I. INTRODUCTION 

Recently, the wireless sensor networks (WSNs) composed 
of tiny sensor nodes are broadly deployed for environmental 
monitoring, automatic controlling, or target tracking [1]. 
These low-cost battery-powered sensor nodes equipped with 
radio transceivers are usually left unattended making sensor 
nodes fault or crash easily, especially when sensor nodes are 
deployed in harsh environments. Various types of faults 
which can significantly affect the network operation are 
known and studied in WSNs [1], [4], [7]. In this paper, the 
detection fault of sensing systems, such as the missing de-
tection, false alarm, and unusual reading, arisen primarily 
from environmental interference, is discussed.  

In most WSNs, sensor nodes only send detection reports 
(decisions) to sinks for energy conservation [1], [5], [7]. The 
detection decision of sensor nodes is made when the sensed 
energy is higher than the prescribed critical value which is 
set by the event energy and reading variance. The status of 
sensor nodes is difficult to evaluate as the sink only receives 
detection decisions. The decision making based on the falli-
ble sensor nodes might be very unreliable. 

Many statistical approaches are previously proposed for 
improving the quality of distributed detection with multiple 
sensors [4], [5], [7], [11]. This collaborative work still needs 
to contemplate the severe energy constraints and environ-
mental interference of WSNs. Unlike previously proposed 

schemes with less consideration for the effects of environ-
mental interference and the faults produced by them, in this 
paper, we focus on the fault probability of sensor nodes and 
the bias of fault probability as sensor nodes are severely 
affected by the environmental interference. 

The remainder of this paper is organized as follows: The 
related work of the reliability improvement in WSNs is 
briefly reviewed in Section II. Section III introduces the 
fault probability and decision quality. The algorithms of 
reading variance estimation and adaptive critical value ad-
justment are proposed in Section IV to improve the decision 
reliability. Section V shows the simulation results of pro-
posed reading variance estimation. Section VI draws our 
conclusions and future work. 

II. RELATED WORK 

In unforeseen circumstances of WSN applications, the 
sensor nodes are redundantly or densely deployed for in-
creasing the reliability. Approaches focused on reliability or 
fault tolerance are hence designed for how to efficiently use 
the redundant sensor nodes. For example, several adaptive 
schemes, which reduce the impact of the failure of sensor 
nodes by adjusting protocols automatically, are designed 
based on the usage of redundant sensor nodes [2], [3], [13]. 

The reliability can also be satisfied by the collaborative 
effort of sensor nodes. Sun, Chen, Han, and Gerla [10] pro-
posed a simple distributed technique, named CWV, by using 
neighbor’s result and exploiting redundant information to 
discern local data correctness for improving reliability. 
Krishnamachari and Iyengar [5] proposed a scheme which 
an individual sensor node communicates with its neighbors 
and uses their binary decisions to correct its own decision to 
detect the event region for increasing fault tolerant capabil-
ity. Luo, Dong, and Huang [7] enhanced this work by con-
sidering measurement error, sensor node fault, and the 
proper neighborhood size. 

The collaborative effort of sensor nodes may cause the 
consistency problem. Clouqueur, Saluja, and Ramanathan [4] 
proposed two fusion schemes, value fusion and decision 
fusion, to solve the Byzantine problem [6] and to accom-
plish better reliability in the data fusion. 

The proactive fault detection schemes focus on whether a 
sensor node or an entire region is crashed for efficient rout-
ing. Staddon, Balfanz, and Durfee [9] proposed a tracing 



scheme in continuous WSNs. Ruiz et al. [8] used MANNA 
to identify the faulty sensor nodes and proposed a manage-
ment scheme for event-driven sensor networks. 

III. FAULT PROBABILITY AND DECISION QUALITY 

A. Fault Probability 
As mentioned earlier, in most WSNs sensor nodes only 

send detection decisions (sensor decisions) to sinks for en-
ergy conservation. There may have the following possible 
scenarios of sensor nodes: (a) detect events; (b) fail to detect 
events; (c) issue fault alarms [4]. The scenarios (b) and (c) 
are the missing detection and false alarm of sensor nodes, 
respectively. The fault probability of sensor nodes is then 
defined in Definition 1 [11], [14].  
 

The fault probability of sensor node  isk Definition 1  
                   k kf ,k k kP p( A D ) p( A D )= ∩ + ∩  
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where f ,kP , kD , kA ,  k kD | A , and kkD | A  are the fault 
probability, detection decision, nearby event, missing detec-
tion, and false alarm of sensor node k, respectively.  

In n-covered WSNs, the t-out-of-n rule of the sensor deci-
sions is proposed to solve the detection problems [14]. The 
event occurrence can be justified by the t-out-of-n rule of 
the sensor decisions, e.g., a sensor node correctly detects an 
event as (t – 1) neighbors also report the same event. The 
probabilities of near by event, missing detection, and false 
alarm of sensor node k then can be estimated as follows: 
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where i is the time slots, and nearbyk, missk and false_alarmk 
are the number of the nearby event, missing detection and 
false alarm of sensor node k, respectively. The fault prob-
ability of sensor nodes in n-covered WSNs then can be es-
timated as follows: 
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For example, in a 5-covered WSN (t = 3), there are 4 events 
happened in 10 time slots, sensor node k reports 4 detection 
decisions where 2 events are detected by 2 or more sensor 
nodes and 2 events are not. The nearby event and fault prob-
abilities of sensor node k are 0.4 and 0.4, respectively. 

Instead of using the t-out-of-n rule of the sensor decisions, 
in target tracking WSNs the number of missing detection 
and false alarm are observed by the moving path of objects, 
which is not included in this paper. 

B. Decision Quality 
The detection problems (decision quality) can be catego-

rized into Bayesian detection and Neyman–Pearson detec-
tion problems. The Bayesian detection problem focuses on 
how to minimize the Bayesian costs and the Neyman–
Pearson detection problem focuses on how to maximize the 
detection probability while the false alarm probability is 
kept below a prescribed level [11], [14].  

In this paper, the error probability of decisions is assumed 
as the only Bayesian cost [14]. The decision quality of 
Bayesian detection for each event then can be evaluated by 
the jointly fault probability of sensor nodes as follows: 
 

The decision quality of Bayesian detection is Definition 2  
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where Q, A, m mD | A , and ffD | A  are the decision quality, 
event, missing detection of sensor nodes which do not report 
the event, and the false alarm of sensor nodes which report 
the event. The event probability can be estimated by the 
average of nearby event probabilities of sensor nodes. 

IV. CRITICAL VALUE ADJUSTMENT 

A sensor node sends a detection decision to the sink when 
the sensed energy is higher than the prescribed critical value 
which may be set by the event energy (enA) and default 
reading variance ( 2

rσ ). The probabilities of missing detec-
tion and false alarm can be misestimated when the environ-
mental interference affects sensor nodes while the critical 
value settings are fixed. In this section, based on reading 
variance estimation, an adaptive critical value adjustment 
mechanism is proposed to solve this problem.  

A. Reading Variance Estimation 
The reading variance can be used to estimate the effects 

of environmental interference as sensor nodes within the 
same region are sustained the same environmental interfer-
ence. Equation (7) shows the most used unbiased sample 
variance where 2

rS  and sr  are the sample variance and 
sample mean of readings and ksr  is the reading of sensor 
node k.  
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The computation of the unbiased estimator is easy, but 

can be affected by the extreme value easily. Avoiding the 



extreme value effect, the readings should be examined and 
the extreme readings should be dropped. There is high prob-
ability that extreme readings exist when the test of variance 
between the prior and latest is rejected. The extreme read-
ings are dropped once a round after compared with the sam-
ple median (or mode). The estimated reading variance is 
recomputed by the prior and latest sample variances after 
the extreme readings are dropped. The detail steps of read-
ing variance estimation are shown as follows: 
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A reading query for reading variance estimation can be 

executed periodically, when a certain number of sensor 
nodes have high fault probability, or when the requirement 
of decision quality cannot be satisfied.  

B. Adaptive Critical Value Adjustment 
As mentioned earlier, the critical value of decision mak-

ing is determined by the event energy and reading variance, 
e.g., A ren 3σ− , where the reading variance is affected by 
environmental interference. The missing detection (false 
alarm) probability might be overestimated if the reading 
variance increased (decreased). To reduce the effect of envi-
ronmental interference, the critical value must be adjusted 
by different reading variances especially in harsh environ-
ments.  

The critical value adjustment is triggered when the read-
ing variance periodically computed is changed, a certain 
number of sensor nodes have high missing detection or false 
alarm probabilities, or the requirement of decision quality 
cannot be satisfied. The critical value adjustment algorithm 
is described below. 
 
Adaptive Critical Value Adjustment

1. Compute and

2. If  changed Adjust critical value by

3. If sensor nodes with 
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V. SIMULATION 

The concept of proposed reading variance estimation is 
validated via simulations by using ns-2 [15]. Compared with 
the value fusion mechanism proposed by Clouqueur, Saluja, 
and Ramanathan [4], we show that the reading variance can 
be well-estimated. 

The simulation settings of this comparison are: 100 sensor 
nodes equipped single sensor deployed in 120× 120m2 area, 
readings are normally distributed from 40 to 50 with vari-
ance 4 to 25; the faulty rate is 0.02; and the significance 
level (α) of the variance test is 0.05; the weight of variance 
adjustment w1 is 0.5. The error of transmission is ignored. 

Fig. 1 shows that the proposed algorithm can estimate the 
reading variance better than the value fusion mechanism 
(with 52%, 17%, and 44% improvement for drop 2, 4, and 6, 
respectively), where “drop n” means dropping the n/2th 
smallest and n/2th largest readings. In Fig. 2, the impact of 
different significance levels (α) is shown to be minor. Fig. 3 
shows that the faulty rate will affect proposed algorithm. 

The w1 and Faulty rate are compared in Fig. 4a and 4b. 
These figures show that the w1 should be adjusted by the 
faulty rate, e.g., when the faulty rate is high, the default 
reading variance should bear more weight to resist the fault. 
 

 
Fig. 1. Reading variance comparison: value fusion vs. proposed algorithm. 

 



 
Fig. 2. Reading variance comparison: different significance levels. 

 

 
Fig. 3. Reading variance comparison: different faulty rates. 

 

 
Fig. 4a. Reading variance comparison: different w1s (faulty rate 0.02). 

 

 
Fig. 4b. Reading variance comparison: different w1s (faulty rate 0.05). 

VI. CONCLUSIONS AND FUTURE WORK 

The fault probability estimation, reading variance, and 
critical value adjustment are proposed to overcome the de-
tection problems of WSNs. The fault probability of sensor 
nodes is computed by sensor decisions. The environmental 
interference is estimated by the reading variance. The criti-
cal value adjustment is proposed to reduce the bias of fault 
probability. 

In [14], Zhang, Varshney, and Wesel used the prior prob-
abilities of hypotheses and Gaussian noise assumption to 
find the optimum t for minimizing the probability of error. 
We enhance this work as the prior probabilities can be esti-
mated by observations and the reading variance estimation 
is proposed instead of Gaussian noise assumption. 

The future work of this research includes: The relation-
ship of w1 and the faulty rate, which can be estimated by the 
fault probability sensor nodes, should be discussed more 
detail; the environmental interference and the critical value 
adjustment policy should also be studied deeply by different 
real applications. 

REFERENCE 
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, 

“Wireless sensor networks: a survey,” Computer Networks 38 (2002) 
393-422. 

[2] A. Cerpa and D. Estrin, “ASCENT: Adaptive Self-Configuring sEn-
sor Networks Topologies,” IEEE Trans. on Mobile Computing, Spe-
cial Issue on Mission-Oriented Sensor Networks, Volume 3, Number 
3, July-September 2004 

[3] Y.-S. Chang, M.-T. Hsu, H.-H. Liu, and T.-Y. Juang, “Dependable 
Geographical Routing on Wireless Sensor Networks,” Lecture Notes 
in Computer Science (LNCS) of Springer-Verlag, Vol. 4523, May 
2007. 

[4] T. Clouqueur, K. K. Saluja, and P. Ramanathan, “Fault Tolerance in 
Collaborative Sensor Networks for Target Detection,” IEEE Trans. on 
Computers, 53(3), pp. 320-333, March 2004. 

[5] B. Krishnamachari and S. Iyengar, “Distributed Bayesian Algorithms 
for Fault-Tolerant Event Region Detection in Wireless Sensor Net-
works,” IEEE Trans. on Computers, 53(3), pp. 241-250, March 2004. 

[6] L. Lamport, R. Shostak, and M. Pease, ”The Byzantine Generals 
Problem,” ACM Trans. on Programming Languages and Systems, 
4(3), pp. 382-401, July 1982. 

[7] X. Luo, M. Dong, and Y. Huang, “On Distributed Fault-Tolerant 
Detection in Wireless Sensor Networks,” IEEE Trans. on Computers, 
55(1), Jan. 2006. 

[8] L. Ruiz, I. Siqueira, L. e Oliveira, H. Wong, J. Nogueira, and A. 
Loureiro, “Fault Management in Event-Driven Wireless Sensor Net-
works,” MSWiM'04. 

[9] J. Staddon, D. Balfanz, and G. Durfee, “Efficient Tracing of Failed 
Nodes in Sensor Networks,” First ACM International Workshop on 
Wireless Sensor Networks and Applications, Sep 2002. 

[10] T. Sun, L.-J. Chen, C.-C. Han, and M. Gerla, “Reliable Sensor Net-
works for Planet Exploration,”The 2005 IEEE International Confer-
ence On Networking, Sensing and Control (ICNSC'05). 

[11] P. Varshney, “Distributed Detection and Data Fusion,” Springer-
Verlag, 1996. 

[13]  F. Ye, G. Zhong, J. Cheng, S. Lu, and L. Zhang, “PEAS: A Robust 
Energy Conserving Protocol for Long-lived Sensor Networks,” Pro-
ceedings of the 23rd International Conference on Distributed Com-
puting Systems (ICDCS'03).  

[14] Q. Zhang, P.K. Varshney, and R.D. Wesel, “Optimal Bi-Level Quan-
tization of i.i.d. Sensor Observations for Binary Hypothesis Testing,” 
IEEE Trans. Information Theory, vol. 48, no. 7, 2002. 

[15] The Network Simulator- ns-2, http://www.isi.edu/nsnam/ns/, 2007 


