
 

  
Abstract—It is not possible to ensure that a network is absolutely 

secure. Therefore, network operators must continually change their 
defense strategies to counter attackers who constantly seek new ways 
to compromise networks. However, as defense resources are limited, 
it is essential that network operators devise effective resource 
allocation strategies to maximize the survival time of critical/core 
nodes under attack. In this paper, the problem of effective resource 
allocation is analyzed as a mixed, nonlinear, integer programming 
optimization problem. To solve this complex problem, we propose an 
effective solution approach based on Lagrangean relaxation and the 
subgradient method. The efficiency and effectiveness of the proposed 
heuristic are evaluated by computational experiments. 

I. INTRODUCTION 
Attackers who compromise computers or networks might 

actually crash a network or interrupt a system’s normal services. 
In this situation, the time between the beginning of a service and 
the time that it is compromised is called the survival time. The 
survival time, shown in Fig. 1, can be calculated as the average 
time between reports for an average target IP address [1]. The 
figure illustrates the average survival time. In each month, the 
thick line indicates the range of the standard deviation, while the 
peak point and lowest point represent, the maximum and 
minimum survival times, respectively. The survival time reflects 
the compromise probability of a network i.e., the lower the 
compromise probability, the longer the network will survive. 

 
Fig. 1.  Monthly Survival Time (2006/12/25 12:00PM) 

F. Cohen described the main strategies of defenders and 
attackers [2]. In practice, both parties must adjust their respective 
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strategies frequently. As defenders adjust their network security 
mechanisms, attackers try to find new network vulnerabilities to 
continue compromising the networks. In other words, defenders 
must change their strategies to protect the network against 
compromise by the constantly evolving strategies of attackers.  

According to [3], the most important asset of an organization is 
its know-how or a mission critical system. Since it is the “core 
node” of a network, it is the target that attackers try to 
compromise. In this paper, we consider network survivability in 
terms of ensuring that the “core node” survives as long as possible 
given that defenders only have limited resources to ensure 
network survivability. To this end, we propose a mathematical 
model to formulate attack-defense scenarios. Our objective is to 
provide defenders with effective defense resource allocation 
strategies so that they can reduce the end-to-end compromise 
probability (i.e., increase the survival time of the core node) in 
different time slots.  Previous research has shown that attempts to 
model attack-defense scenarios in an abstract, mathematical way 
are non-trivial. Moreover, the issues remain unsolved [3, 4]. 

The remainder of this paper is organized as follows. In Section 
2, we formulate the budget allocation problem. Then, in Section 3, 
we propose a Lagrangean Relaxation-based solution approach to 
the problem. The results of computational experiments conducted 
to evaluate the proposed solution are reported in Section 4. 
Finally, in Section 5, we present our conclusions and indicate 
possible directions of future research. 

II. PROBLEM FORMULATION 

A.  Problem Description and Assumptions 
An attacker must find a suitable path from the source node s to 

the core node t and compromise all the intermediate nodes on that 
path to maximize the end-to-end compromise probability in a 
specific time slot (i.e., minimize the network survival time). 
Meanwhile, a defender must allocate limited resources, such as 
time, money, and man-power, effectively in order to minimize the 
maximized compromise probability (i.e., maximize the 
minimized network survival time).  
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We assume that the target network is at the Autonomous 
System (AS) level. There may be more than one attacker 
attempting to compromise the network, but we can model a group 
of attackers in different locations as an omnipresent attacker, and 
consider defenders similarly [5]. Although it is improbable that an 
attacker would know everything about a network in practice, the 
worst-case scenario must be considered. Therefore, we assume 
that an attacker can obtain complete information about the target 
network and use it intelligently.  

Based on Fig. 1 and other information from the same source [1], 
we assume that both the survival time and the compromise 
probability follow normal distributions. From a defender’s 
perspective, he could allocate extra budget to each node to 
increase the mean and the variance of the survival time, and 
thereby reduce the compromise probability. The end-to-end 
compromise probability distribution from the source node to the 
core node is calculated by convolution of the probability density 
functions of all the intermediate nodes on the path. 

B. Problem Formulation 
Next, we define the notations used in this paper and formulate 

the problem. 
TABLE I 

DECISION VARIABLES 

Notation Description 

bi The budget allocated to protect a node i, where i∈N 
µ The mean of the normal distribution, which is the convolution 

of the probability density functions of all nodes on the attack 
path 

σ2 The variance of the normal distribution, which is the 
convolution of the probability density functions of all nodes on 
the attack path 

mp The mean of the normal distribution, which is the convolution 
of the probability density functions of all nodes on the path p, 
where p∈Pw 

sp 2 The variance of the normal distribution, which is the 
convolution of the probability density functions of all nodes on 
the path p, where p∈Pw 

µi(bi) The mean of the normal distribution, which is the probability 
density function of a node i that is a function of the budget, 
where i∈N 

σi (bi)2 The variance of the normal distribution, which is the 
probability density function of a node i that is a function of the 
budget, where i∈N 

yi 1 if the node i is chosen, and 0 otherwise (where i∈N) 
yt 1 if the core node t is chosen, and 0 otherwise 
xp 1 if the path p is selected as the attack path, and 0 otherwise 

(where p∈ Pw) 
 

TABLE II 
GIVEN PARAMETERS 

Notation Description 

N  The index set of all nodes in the network 
w The O-D pair ( s , t ) 
Pw The index set of all candidate paths for an O-D pair w 
δip

 
The indicator function, which is 1 if node i is on path p, and 0 
otherwise (where i∈N, p∈ Pw) 

δip* The indicator function, which is 1 if node i is on the shortest 

path p* (where the cost associated with node i is µi(min{Bi}) ), 
and 0 otherwise (where i∈N) 

σiq* The indicator function, which is 1 if node i is on the shortest 
path q* (where the cost associated with node i is µi(max{Bi}) ), 
and 0 otherwise (where i∈N) 

B The total budget 
Bi All possible values of bi allocated to node i, where i∈N 
T The time taken by the attacker 
M All possible values of µ on the attack path 
Σ2 All possible values of σ2 on the attack path 
Mp All possible values of mp on the path p, where p∈Pw 
Sp

2 All possible values  of sp
2 on the path p, where p∈Pw 

P(t, µ, σ2) A polynomial approximation tail distribution of the normal 
distribution with mean µ and variance σ2 at the time t [6] 
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The objective is to minimize the maximized end-to-end 

compromise probability 1-P (T, µ, σ2). In the inner problem, an 
attacker tries to maximize the compromise probability by 
selecting the most vulnerable nodes to attack. In the outer 
problem, the defender attempts to minimize the compromise 
probability by allocating a defense budget to each node. As 
function P is a tail distribution of the probability from time T to 
infinity and we want to cumulate the functions from time zero to 
T, we take one minus function P as the objective function. To 
simplify the original problem, we reformulate it as follows: 
Objective function: 

2
2 ,

min ( , , )
i i

IP b y
Z P T µ σ= −    ,                                            (IP 2) 

subject to: 
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Constraint (IP 2.1) represents the original inner problem, where 

the end-to-end compromise probability of the attack path should 
always be less than or equal to the compromise probability of 
every other path so that the objective function can be maximized.   

III. SOLUTION APPROACH 

A. Lagrangean Relaxation 
By applying the Lagrangean relaxation method [7] with a 

vector of Lagrangean multipliers, we can transform the 
reformulated problem (IP 2) into the following Lagrangean 
relaxation problem (LR 1), where constraints (IP 2.1), (IP 2.2), (IP 
2.3), (IP 2.8), (IP 2.9), (IP 2.14), and (IP 2.20) are relaxed.  
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By definition, u1, u2, u3, u4, u5, u6, and u7 are the vectors of 

{up
1}, {u2}, {u3}, {up

4}, {up
5}, {ui

6}, and {u7} respectively, where 
u1, u6, and u7 are non-negative and u2, u3, u4, and u5 are 
unrestricted. To solve (LR 1) optimally, we decompose it into four 
independent and easily solvable subproblems as follows. 

 
Subproblem 1 (related to decision variable xp) 

6 6
1( ) min

p
w

sub i p pix i N p P
z u u x δ

∈ ∈
= ∑ ∑  ,                                    (SUB 1) 

subject to (LR 1.9) and (LR 1.10). 
(SUB 1) can be considered a minimum cost path problem with 

node costs 
6
i piu δ . Because of the non-negative costs, we can 

apply Dijkstra’s shortest path algorithm to optimally solve this 
subproblem. The time complexity is O(|N|2). 
 
Subproblem 2 (related to decision variable yi , bi) 
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subject to (LR 1.11) – (LR 1.14). 
We assume that µi(bi) and σi (bi)2 are equal to the concave 

functions µ0+λAln(λB bi +1) and σ0
2+λCln(λD bi +1) respectively. 

This suggests that the marginal effect of the defense capability of 
node i could be reduced by allocating additional budget. If the 
constant value u7B is ignored, (SUB 2) can be decomposed into a 
series of |N| subproblems that can be solved optimally by an 
exhaustive search. The time complexity is O(|N| |Bi|). 

 
Subproblem 3 (related to decision variable µ, σ2) 

2

1 2 3 1 2 2 3 2
3

,
( , , ) min 1 ( , , )

w

sub p
p P

z u u u u P T u u
µ σ

µ σ µ σ
∈

 
= − + +  

 
∑  ,               

(SUB 3) 
subject to (LR 1.1) – (LR 1.4). 

The mean and variance, µ and σ2, are discrete. Therefore, (SUB 
3) can be solved optimally by an exhaustive search. The time 
complexity is O(|M| |∑2|). 
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We are concerned with paths on which one of the multipliers 
up

1, up
4, or up

5 is at least non-zero. Such paths can be considered as 
possible active paths and added to a list. After marking all 
possible active paths, the next step in solving (SUB 4) is to check 
the list and obtain the value of the smallest objective function. The 
time complexity is O(|Pw|  |Mp|  |Sp

2|). 
 
According to the weak Lagrangean duality theorem [7], the 

optimal value of the problem (LR 1) is, by its nature, the lower 
bound (for minimization problems) of the objective function’s 
value in the primal problem (IP 2). The tightest Lagrangean lower 
bound can be derived by tuning the Lagrangean multipliers, i.e., 
by maximizing the (LR 1) problem. Although there are several 
methods for solving this problem, the subgradient optimization 
technique [7] is the most popular. 

B. Getting Primal Feasible Solutions 
According to the solutions to (LR 1) and the multipliers, we can 

obtain some hints about deriving a heuristic to improve the 
solution quality of (IP 2). We observe that the multiplier ui

6 
represents the importance of each node; therefore, the more 
important a node i is, the bigger the multiplier ui

6 it will have. Our 

proposed heuristic is described below. 
 

TABLE III 
HEURISTIC FOR THE MODEL 

Step Description 

1 Allocate the budget bi derived from (SUB 2) to each node, where i
∈N. 

2 Check if the budget allocated to the network fulfills the constraints. 
3 Choose the path xp derived from (SUB 1) as the attack path. 
4 Move budget 6 6 6max( )i i i

i N

u u u B
∈

 − × 
 

∑  from a node  not on the 

attack path to a node on the attack path, where i∈N and node i was 
allocated budget bi > 0 in step 1 

IV. COMPUTATIONAL EXPERIMENTS 

A. Experiment Environments 
We choose two popular network topologies for our 

experiments. One is a grid network [8]; the other is a random 
network [8]. Clearly, a network with many nodes that are not 
allocated any budget has a lower defense capability than a 
network with fewer nodes that are allocated some budget. Hence, 
we assume that µi(bi) = 1.3 ln ( 1.3 bi + 1 ) + 0.11 and σi(bi)2 = 1.3 
ln ( 1.3 bi + 1 ) + 0.01. 

We compare the compromise probability of two simple 
algorithms with that of our proposed heuristic. Simple algorithm 1 
(SA1) is a popularity-based budget allocation strategy that 
dispenses the budget according to the accumulated compromised 
frequency of each node on the candidate path. Simple algorithm 2 
(SA2) is a greed-based budget allocation strategy that first 
allocates a budget to the node with the smallest compromise 
probability between the source node and the core node.  

The LR value represents the compromise probability of the 
primal feasible solution derived by our proposed heuristic, while 
the LB indicates the lower bound determined by the LR process. 
The duality gap is calculated by 100%LB LR

LR
− × . 

B. Experiment Results 
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Fig. 2.  Compromise Probability of a Grid Network with a 25-Unit Budget (|N|=9) 
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Fig. 3.  Compromise Probability of a Random Network with a 10-Unit Budget 
(|N|=9) 

 
From Figures 2 and 3, we observe that the compromise 

probability of the nodes between the source node and the core 
node increases continually over time; hence, the core node will be 
compromised eventually. We also observe that the proposed 
heuristic outperforms SA1 and SA2, and yields a smaller duality 
gap for the value of the optimal objective function. 
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Fig. 4.  Comparison of Different Budgets and Topologies  (|N|=9) 

 
The graph in Fig. 4 shows that the more budget we allocate to a 

grid network, the lower will be the compromise probability of 
nodes. Unlike grid networks, the compromise probability of 
random networks cannot be reduced by allocating more budgets. 
The reason is that, in random networks, there exists a shortest path 
from the source node to the core node. Even if nodes on this 
critical path are allocated the maximum budget, an attacker will 
still choose it as an attack path because the compromise 
probability of random networks cannot be reduced by simply 
allocating extra budget. Furthermore, comparing grid networks 
with random networks under different total budget scenarios, we 
observe that the compromise probability of grid networks is lower 
than that of random networks. This is because grid networks have 
larger diameters than random networks, so attackers need to go 
through more hub sites to compromise grid networks. 

V. CONCLUSION 
In this paper, we use attack-defense scenarios to describe one 

kind of targeted attack. An attacker tries to maximize the 
end-to-end compromise probability of a path between the source 
node and the core node, while a defender tries to minimize that 
probability. Although it is impossible to prevent attackers from 
penetrating networks, by implementing proper defense resource 
allocation strategies, defenders can establish solid defense 
mechanisms to reduce the compromise probability in the event of 
intelligent and malicious attacks. In other words, the survival time 
of the core node can be increased.  

From our experiments, we conclude that, although increasing 
the total budget is a good way to defend grid networks, the 
compromise probability can also be reduced by adopting a 
defense-in-depth strategy (i.e., increase the depth of a network) 
when allocating the defense budget. We also note that providing 
extra budget does not increase the survival time of some networks 
(e.g., random networks); moreover, the survival time of such 
networks is less than that of grid networks.  

The key contribution of this work is that we successfully model 
the security problem, including concepts like the core node, 
compromise probability, and survival time, as a well-formulated 
mathematical problem, which is then solved by the proposed 
heuristic. This is a major step in the analysis of network attacks, 
since previous research seldom modeled real-world attack 
behavior in this way. We believe that the proposed model can be 
extended to different attack-defense scenarios in the context of 
survivability. In our future work, we will consider the situation 
where attackers can devise new attack methods based on previous 
attack experience so that they can compromise other nodes more 
easily. Specifically, it is assumed that, for each node 
compromised, the attacker would obtain a discount coupon, which 
could be used to increase the compromise probability of nodes 
subsequently targeted for attack. 
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