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Abstract 

 

Wireless communication networks provide convenience, however, also challenges to 
multimedia services due to typically limited bandwidth and various QoS 
(Quality-of-Service) requirements. For a wireless communication network service 
provider/administrator, it is then essential to develop an effective resource allocation 
policy so as to fully satisfy possibly different QoS requirements by different classes of 
traffic; while in the meantime, for example, the overall long-term system revenue rate can 
be maximized. 

In this paper, we consider the problem of time slot allocation for multiple classes of 
traffic in wireless networks under throughput and delay constraints. To solve the problem, 
we propose an algorithm that is a novel combination of the Markovian decision process 
(MDP) and Lagrangean relaxation (LR). Another primal heuristic based on the policy 
enhancement algorithm is also developed for comparison purposes. Our experiment results 
show that the proposed approach can find a near optimal time slot allocation policy to 
maximize long-term system revenue under QoS requirements. 
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Abstract 
 

Wireless communication networks provide convenience, 
however, also challenges to multimedia services due to 
typically limited bandwidth and various QoS 
(Quality-of-Service) requirements. For a wireless 
communication network service provider/administrator, it is 
then essential to develop an effective resource allocation policy 
so as to fully satisfy possibly different QoS requirements by 
different classes of traffic; while in the meantime, for example, 
the overall long-term system revenue rate can be maximized. 

In this paper, we consider the problem of time slot allocation 
for multiple classes of traffic in wireless networks under 
throughput and delay constraints. To solve the problem, we 
propose an algorithm that is a novel combination of the 
Markovian decision process (MDP) and Lagrangean relaxation 
(LR). Another primal heuristic based on the policy 
enhancement algorithm is also developed for comparison 
purposes. Our experiment results show that the proposed 
approach can find a near optimal time slot allocation policy to 
maximize long-term system revenue under QoS requirements. 

 
Keywords: delay, Lagrangean relaxation, Markovian decision 
process, optimization, time slot allocation, throughput, wireless 
networks 
 
I. INTRODUCTION 
 

In the last decade, the Internet has become increasingly 
important in our daily lives. With the growth in the number of 
users, many applications have been developed to provide more 
convenient services as well as entertainment. The demand for 
data transmission applications for web browsing and 
multimedia services has also increased dramatically.  

New wireless networks technologies, such as the 
third-generation (3G) cellular system and IEEE 802.16 
(Worldwide Interoperability for Microwave Access, WiMax), 
are designed to provide higher capacity for data services [10, 
19]. Moreover, with the increasing demand for multimedia and 
other real-time transmission services, Quality of Service (QoS) 
has become a key issue that must be considered in the design of 
new wireless networks [3, 20, 22]. However, although the 
standards define the QoS architecture, the scheduling algorithm 
for a system with QoS-guaranteed transmission is not specified 
[2, 22]. 

Because of restricted bandwidth and QoS requirements, 
proper resource allocation is much more important in wireless 
networks than in wired networks. Better resource allocation 
policies allow wireless networks to achieve higher capacity 
utilization under the QoS requirements of each service class. 
Thus, a number of mechanisms, such as time-division 
multiplexing, frequency division multiplexing, time division 

multiple access, frequency division multiple access, and code 
division multiple access, have been developed to improve the 
utilization of channel capacity, [5, 7, 8, 11, 14, 15, 16]. 

In this paper, we discuss how a time slot system for resource 
allocation at wireless base stations (BS) can optimize the 
utilization of the capacity of wireless networks and also satisfy 
QoS requirements. 

System revenue is considered in [7, 8, 15], but [15] does not 
address the QoS issue; while [7] and [8] only focus on the call 
blocking rate as a QoS requirement. However, to provide 
multimedia and other real-time services in wireless networks, it 
is not sufficient to consider the call blocking rate alone. Hence, 
we use delay and throughput requirements as QoS criteria. 
Since some systems have difficulty estimating delay, we use 
some approximations to estimate the delay of each class of 
service. 

Quality of service, a key issue in multimedia transmission 
and other real-time services on the Internet, can be evaluated 
from a number of perspectives, such as throughput, delay, jitter, 
and reliability. The latest wireless networks are designed to 
support QoS-guaranteed transmission. For example, in 3G and 
IEEE 802.16, data packets are classified into several classes of 
service, each of which has different QoS requirements, [20, 21, 
22]. In [5], two modes of bandwidth allocation for IEEE 802.16, 
namely, complete partitioning and complete sharing, are 
considered. With complete partitioning, a fixed amount of 
bandwidth is statically assigned to UGS (unsolicited grant 
service), while the remaining bandwidth is allocated to PS 
(polling service) and BE (best effort) services. In the case of 
complete sharing, when the bandwidth requirement for UGS 
traffic is less than the available bandwidth, the latter is allocated 
to PS. In [22], traffic priority is one of the QoS parameters 
considered. Given two service flows with identical QoS 
parameters except the priority, the higher priority service flow 
should be allocated a shorter delay and a higher buffering 
preference. 

Many techniques can be used to improve QoS. For instance, 
“traffic shaping” smoothes traffic on the server side and can 
also be used for traffic policing to monitor traffic flow; 
“resource reservation” reserves resources, including bandwidth 
and buffer space, to ensure they are available for transmitting 
packets; and “admission control” allows a base station to decide 
whether to admit or reject the incoming traffic flow based on its 
own capacity and how many commitments it has already made 
to other flows [1]. Because of the importance of QoS, many 
resource allocation methods have been proposed in recent years 
[5, 7, 8, 11, 16]. 

In applications that provide QoS-guaranteed data 
transmission, delay and throughput requirements are normally 
used as QoS criteria. Many resource allocation methods had 
been proposed to maximize the utilization of the capacity and 
satisfy QoS requirements. Some approaches use a deadline, 
which is the acceptable delay, of each packet to allocate time 
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slots [11, 16], while others base the allocation on the current 
queuing situation in the system [5]. Admission control is also 
used to control incoming traffic flows to ensure that the system 
can fully satisfy the QoS requirements of new flows as well as 
those already admitted [5, 11]. In cellular systems, the call 
blocking rate is an important criterion for evaluating QoS, [7, 8]. 
To summarize, the common purpose of the above approaches is 
to maximize the utilization of a system’s capacity under given 
QoS requirements. 

The remainder of this paper is organized as follows. Section 
II contains the problem description. In Section III, we formulate 
the problem as an analytical model. In Section IV, we propose a 
solution approach to the problem.  Section 5, contains the 
experiment results. We also compare the proposed solution with 
a simple algorithm. Then, in Section VI, we present our 
conclusions. 

 

 
Fig.1. A system queue 

 
II. PROBLEM DESCRIPTION 
 

As shown in Figure 1, we consider a queuing system for a 
wireless base station (BS), where packets are classified into 
four service classes. The problem is to determine the best time 
slot allocation policy for each wireless base station in order to 
maximize the total system revenue under the delay and 
throughput constraints of each service class. When a BS has 
data to transmit to subscriber stations, the data packets must 
wait in a queue. The four service classes have different 
transmission priorities; hence, if there is not enough space in the 
queue for newly arrived packets, the packet with highest 
priority will join the queue and the packet with the lowest 
priority will be dropped, even it was already in the queue.  

In the proposed model, the system state is defined by the 
number of packets of each service class in the queue. For 
example, state (4, 3, 2, 1) means the number packets in service 
classes 1, 2, 3, and 4 in the queue is 4, 3, 2, and 1 respectively. 
In each state, the system can transmit at most N packets in one 
frame. The different combinations of the four service class 
packets that can be transmitted in one frame are called 
“alternatives.” For instance, suppose the current state of a 
system with four service classes is (1, 2, 0, 3) and the maximum 
number of packets that can be transmitted in a frame is 3; then, 
the alternatives of this state will be (1, 2, 0, 0), (1, 1, 0, 1), (1, 0, 
0, 2), (0, 2, 0, 1), (0, 1, 0, 2), and (0, 0, 0, 3). The revenue 
derived will depend on the number and type of packets serviced, 
as packets in different service classes may yield different 
rewards.  

 
III. PROBLEM FORMULATION 
 

We assume that the arrival processes of the four service 
classes follow a Poisson distribution with different arrival rates 
and are mutually independent. Hence, the probability that x 
packets of a service class c will arrive in a particular frame can 
be calculated by the following Poisson distribution: 
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As the arrival processes of the four service classes are known, 
the state transition probability can be calculated by the function 

k
i jp , which means a system currently occupying state i will 

occupy state j after its next transition given that the decision is 
k.  
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Approximation of the Queuing Delay 
 

Because the queuing problem is very complex, it is difficult 
to estimate the queuing delay of each service class. In [4], 
Little’s formulas are used to relate the steady state’s mean 
system size to the average packet waiting time as follows. The 
queuing delay, qW , can be calculated by  

q
q

L
W

λ
=

, 
where qL  is the average number of packets in the queue  and 
λ  is the arrival rate of the packets. One of the conditions of 
Little’s formulas is that the system must be conservative, which 
means no packet in the queue will be dropped [4].  

Therefore, we approximate the queuing delay for a service 
class, c, the approximation is derived by dividing the average 
number of packets belonging to c in the queue by the average 
number of transmitted packets of c in each time frame. When 



 
 

the drop rates of each service class are very low, the 
approximation is highly accurate. The error rate between the 
real delay and the approximated queuing delay will deteriorate 
if the drop rate of each service class increases.  

The notations used to model the problem are listed below: 
Given Parameters 
Notation Description 

M The set of service classes 
m The number of service classes 

cλ  The arrival rate of service class c, c∈M 

cR  
System revenue when servicing one class c 
packet, c∈M 

N The maximum number of packets that can be 
transmitted in a frame 

B The queue size of the system (in packets), where 
B≥N 

S The set of all states 
K The set of all alternatives  

c
iq  

The number of packets belonging to service class 
c in state i, c∈M, i∈S 

cD  The delay requirement of service class c, c∈M 

cT  
The throughput requirement of service class c, c
∈M 

k
i jr  

The revenue required to change from state i to 

state j given decision k, ( )k c
i j i c

c M
r n k R

∈

= ∑  

k
ir  

The expected system revenue of state i given 
decision k 

( )c
in k  

The number of packets belonging to service class 
c transmitted in state i if the decision of state i is 
k, ( )c

i
c M

n k N
∈

≤∑ ,  c M∀ ∈ , i S∈  

k
i jP  

When an alternative k has been chosen for state i, 
the probability from state i to state j after one state 
transition is k

i jP  

 
Decision Variables 
Notation Description 

k
id  

Conditional probability of choosing alternative k 
given that the system is in state i 

iπ  
The limiting state probability of state i, which is 
independent of the initial state 

 
The original problem can be reformulated as a Markovian 

decision problem with additional QoS constraints. 
The Markovian decision process (MDP) is a dynamic 

programming application used to solve a stochastic decision 
process that can be described by a finite number of states. The 
transition probabilities between the states are described by a 
Markov chain. The reward structure of the process is also 
described by a matrix whose individual elements represent the 
revenue can be obtained by moving from one state to another. 
Both the transition and revenue matrices depend on the decision 
alternatives available to the decision-maker. The objective is to 
determine the optimal policy that maximizes the expected 

revenue of the process over a finite or infinite number of stages 
[9, 18].  

We can formulate the Markovian decision process as a linear 
programming problem [6]. The objective function of the 
original problem is shown as follows: 

Objective function: 

LP 1Z max k k
i i i

i S k K
d rπ

∈ ∈

= ∑∑  (LP 1)

Then, we reformulate the objective function of (LP 1) into a 
minimum form, which will not affect the original result, and the 
formulation is listed in the following: 

Objective function: 
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Explanation of the objective function: 
 
The objective function of (LP) is to maximize the long-term 
system revenue when the system is stationary. 
 
Explanation of constraints: 
 
[1] Steady State Constraints: 
Constraints (1), (2), and (3) are the steady state constraints of 
the system. Constraint (1) is Pπ π= , where 0 1( ,  , ...)π π π=  
represents the limiting probability vector of the system state and 
P is the state transition probability matrix. Constraint (2) 
restricts the probability to a value larger or equal to zero 
Constraint (3) requires that the sum of all the limiting 
probabilities must be equal to 1. Constraints (2) and (3) jointly 
restrict the value of each iπ  to between 0 and 1. 



 
 

[2] State Transition Probability Constraints: 
Constraints (4) and (5) relate to the state transition probability. 
Constraint (4) represents that when a state transits from i to all 
states with decision k, the sum of all the transition probabilities 
must be equal to 1. Constraint (5) restricts the transition 
probability k

i jP to a value larger or equal to zero. 

 
[3] Decision Making Constraints: 
Constraints (6) and (7) are related to the decision variable k

id . 
In state i, the system chooses alternatives with different 
probabilities, and the sum of the probabilities is equal to 1. 
Constraint (6) restricts the probability k

id  to a value larger or 
equal to zero. 
 
[4] Revenue Constraints: 
Constraints (8) and (9) relate to revenue calculation. Constraint 
(8) is used to calculate the expected revenue of transiting from 
state i if the corresponding decision is k, while Constraint (9) 
represents the restriction of k

ir . 

 
[5] QoS Constraints: 
Constraints (10) and (11) stipulate the delay and throughput 
requirements of the four service classes. Note that the 
numerator of the queuing delay is k c

i i i
i S k K

d qπ
∈ ∈
∑ ∑  instead of 

c
i i

i S
qπ

∈
∑ . In the next section, we use  k c

i i i
i S k K

d qπ
∈ ∈
∑ ∑  to 

reformulate the objective function because it simplifies the 
process. 
 
IV. SOLUTION APPROACH 
 
The Lagrangean relaxation (LR) method was first used to solve 
large-scale integer programming problems in the 1970s [12]. It 
can be used to solve complicated mathematical problems more 
efficiently and provide excellent solutions for such problems. 
Hence, the LR method has become one of the best tools for 
solving optimization problems, such as integer programming, 
linear programming with a combinatorial objective function, 
and non-linear programming problems [13, 17]. 

The primal problem (LP 2) is transformed into a LR problem 
in which Constraints (10) and (11) are relaxed. To relax 
Constraint (10), we multiply the both sides by the denominator 
on the left-hand side.  

Objective function: 
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(LR 1)

Subject to Constraints (1) ~ (9) 
 
The subproblem of this LR problem is exactly only one that 

is (SUB 1) subjected to constraints (1)~(9),  which can be 
solved by Policy Iteration method, [6, 18]. The objective 
function of the subproblem is defined as follows. 

 
Objective function: 

min{ [ ( ( ) ( ( ) ))]}k k T c D c c
i i i c i c i c i

i S k K c M
d r n k n k D qπ µ µ

∈ ∈ ∈

− + + −∑∑ ∑  (SUB 1)

Subject to constraints (1) ~ (9) 
 
Getting Primal Feasible Solutions: 
 

After the subproblem has been solved optimally, we can 
obtain a set of decision variables and use them to develop a 
LR-based heuristic algorithm to find a near optimal feasible 
solution. The primal feasible solution is an upper bound (UB) of 
the problem (LP 2), and the Lagrangean elaxation dual problem 
is a lower bound (LB) of the problem (LP 2). The duality gap 
between UB and LB, computed by |(UB − LB) / UB|*100%, 
indicates the optimality of the solution. Next, we consider the 
proposed heuristic. 

The violation status of some QoS requirements may change 
during the decision adjustment procedure - a phenomenon 
known as “oscillation”. In addition, if oscillations occur during 
the decision adjustment procedure, we may have changed too 
many decisions at each iteration. To reduce the probability that 
oscillations will occur, we can modify decision_change_limit 
by applying the adjustment rule.  
 

TABLE 1. Heuristic-Phase Ⅰ: Feasible Solution 
Heuristic-Phase Ⅰ: Feasible Solution 
Step 1: Sort the steady state probabilities of each state from 
large to small. 

 
Step 2: Calculate the violation factor 

_ max( ,  ( )),
( )

k c
i i i

k ci S k K
c c i i ik c

i S k Ki i i
i S k K

d q
violation c D T d n k

d n k

π
π

π
∈ ∈

∈ ∈
∈ ∈

= − −
∑∑

∑∑∑∑
 

for c M∈ . Note that violation_c≧0 means the relative 
constraint has been violated. 
 
Step 3:  
Stage 1: Perform the decision adjustment procedure 
beginning with the state that has the largest steady state 
probability. 
Stage 2: Randomly select states for decision adjustment. 
Decision Adjustment: For each selected state, move one 
time slot from the state that has the best performance to the 
state with the worst performance if possible. Then, select the 
next state for decision adjustment. 

 
Step 4: Calculate the delay and throughput performance of 
each service class.  



 
 

IF (all constraints have been satisfied) {    
Stop the procedure of Phase 1: Feasible_Solution; 
Go to Phase 2: Objective_Value_Improvement;} 

ELSE { 
Adjust decision_change_limit according to the rule for 
adjusting decision_change_limit.  
Calculate the steady state probabilities of each state; 
IF (oscillation_limit has been reached) 

Go to Step 2 and then take stage 2 of step 3. 
ELSE 

Go to Step 1 and then take stage 1 of step 3; 
} 

 
TABLE 2. Heuristic-Phase : Objective Value Ⅱ

Improvement 
Heuristic-Phase Ⅱ: Objective Value Improvement 
Step 1:  
Sort the steady state probabilities of each state. 

 
Step 2: 
while (is_feasible) { 

/*start from the state that has the lowest steady state 
probability*/ 

Move one slot from the service class with the lower 
reward to the class with the highest reward; 
IF ( the new UB is better than the original UB ) 

Update the value of the UB; 
Check feasibility;  
/*if not feasible, then is_feasible = false 

the final feasible solution is the primal solution to the 
problem*/ 

Next state; 
} 

 
TABLE 3. The Rule for Adjusting decision_change_limit 
The Rule for Adjusting decision_change_limit 
IF (no oscillation occurs) {//Y is a small number 

IF ((violation_Cn < Y for all n M∈ ) &&  
(decision_change_limit > threshold_A)) 

     Set decision_change_limit to threshold_A; 
ELSE  

decision_change_limit remains the same; 
} 

ELSE { 
IF (threshold _B < decision_change_limit < threshold _A)

Reduce decision_change_limit by one unit; 
ELSE IF ( (violation_Cn < Y for all n M∈ ) &&  

(decision_change_limit > threshold _A) ) 
Set decision_change_limit to threshold_ A;  

ELSE 
decision_change_limit = decision_change_limit / 2;  

} 
 
V. COMPUTATIONAL EXPERIMENTS 
 

Simple Algorithm: 
 

We compare our proposed iteration-based algorithm with a 
non-iteration-based algorithm that uses the “weight” to allocate 
slots to each service class. The “weight” of each service class 
considers the number of packets in queue of that class, as well 
as the throughput and delay requirements.  

In each state, we first assign one slot to the service class with 
the highest weight, and then divide the corresponding weight by 
two, and repeat the assignment process until all slots have been 
assigned. 

 
Scenario: 
 

We use the following scenarios to evaluate the performance 
of our proposed algorithm under different parameter settings. 

1. Different queue sizes under different revenue matrixes. 
2. The performance under different QoS requirements. 
3. The impact under different adjustments of  

decision_change_limit. 
If the algorithm can not find a feasible solution, the objective 

value of the experiment will be set to zero. 
The experiment results in Figures 2 to 5 show that the 

objective values depend on the throughput performance. 
Therefore, if the throughput requirements are relaxed, both LR 
and SA can find a feasible solution to the problem easily. 
However, when the throughput requirements are strict, it is 
much harder for SA to find a feasible solution.  

The adjustment rule for decision_change_limit has three 
parameters: threshold_A, threshold_B, and the initial value of 
decision_change_limit, which can be modified to suit cases 
with a different total number of states. The experiment results 
show that different parameter settings only affect the objective 
values slightly, but they have a strong effect on the total number 
of iterations required to find a feasible solution  

If threshold_A and threshold_B are increased, the total 
number of iterations will increase accordingly because there 
may be more oscillation in the decision adjustment procedure 
before feasible solutions can be found. In addition, if the initial 
value of the decision_change_limit is too small, more iterations 
may be needed to find feasible solutions because the 
improvement at each iteration is relatively small. 

 

 
Fig. 2. Objective Values under Different QoS Requirements 
 



 
 

 
Fig. 3. Objective Values under different queue sizes 

 

 
Fig. 4. The Number of Iterations for Different Adjustments 

of decision_change_limit (The Initial Value of 
decision_change_limit is 80) 

 

 
Fig. 5. The Number of Iterations for Different Initial Values 

of decision_change_limit 
 
VI. CONCLUSIONS 
 

We have formulated the problem of time slot allocation in 
wireless networks as a linear programming problem, where the 
objective function is to maximize long-term system revenue. In 
Section 3, we propose a Lagrangean Relaxation-based heuristic 
combined with the Markovian decision process to solve the 
problem. The total number of the policies increases 
dramatically as the queue size, number of service classes, and 
number of packets that can be transmitted in a frame become 
larger. For example, there are more than 9.5*101469 different 
policies in the problem, such that the queue size, service classes, 
and maximum number of transmitted packets in one frame are 
12, 4, and 6, respectively. Although the complexity of the 
problem is very high, our proposed approach can still find a 
near optimal feasible solution. The experiment results show that 
the proposed algorithm outperforms a simple algorithm in terms 
of finding a near optimal feasible solution to the problem. 
Moreover, the duality gaps of our proposed solution are smaller 

than 2%.  
Since we know that the arrival rate dominates the throughput 

performance because of the occupancy priority, we can modify 
the occupancy rule for the queue space. For example, we can 
divide the queue into two parts. The packets in one part will not 
be dropped, even if a packet with higher occupancy priority 
wants to join the queue. We also consider the situation where 
packets of some service classes will not be dropped if they are 
already in the queue. The system discussed in this paper only 
has one queue. In our future work, we will try to extend the 
concept to a multiple-queue system for multiple communication 
channels in order to accommodate different types of networks. 
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