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Abstract 
 

Delivering continuous services in information 
infrastructures is a major challenge. For system or network 
administrators, redundancy allocation is one of the best 
strategies to ensure service continuity in the context of risk 
management, where the ultimate goal is to reduce potential 
threats to an acceptable level with limited resources. In this 
paper, we address the problem of reducing the vulnerability 
of a network to hazardous events and malicious attacks. We 
analyze the problem as a mixed, nonlinear, integer 
programming optimization problem with a min-max format. 
The solution approach, which is based on Lagrangean 
Relaxation and a subgradient method, solves this 
complicated problem effectively. We evaluate the scalability 
and applicability of the proposed heuristic via 
computational experiments on different network topologies 
and scales. 
 
 
1. Introduction 
 

Modern organizations are becoming increasingly reliant 
on information infrastructures, especially the Internet, to 
run their daily business operations and services. The goal 
of delivering continuous services, however, poses a major 
challenge. Apart from the threat of malicious attacks, 
hazardous events, such as earthquakes, flooding, blizzards, 
and hurricanes, can have a strong impact on information 
security. Hence, from a business perspective, information 
security has expanded toward risk management and 
evolved into a brand-new concept of survivability, which 
focuses on the availability of systems and the continuity of 
services [1].  

The advantage of fault tolerance is that system or 
network administrators can deploy redundant components. 
This is one of the best strategies to ensure service 
continuity in the context of risk management, where the 
ultimate goal is to reduce potential threats to an acceptable 
level with limited resources. The objective of the 
redundancy allocation problem (RAP) is to determine an 
optimal design strategy to maximize system survivability 
and reliability under the consideration of system constraints. 
In general, RAP is classified as NP-hard in terms of 
computational complexity due to its nonlinearity, 

nonconvexity, and integrality [2]. 
Many researchers have considered RAP under different 

scenarios, assumptions, constraints, and solution 
approaches. For example, the discrete optimization model 
proposed in [3] allocates redundancy to critical IT 
functions for disaster recovery planning, while the model in 
[4] comprises multiple, functionally equivalent components 
available for use in the system. Ha et al. propose a new 
heuristic based on a tree structure to solve the general RAP 
in reliability optimization [5]. All the above works 
formulate RAP as a maximization problem, where the 
objective is to maximize system reliability. However, Jose 
et al. formulate RAP from a different perspective in that the 
objective is to maximize the minimized subsystem 
reliability in a series-parallel system [6].  

In the realm of RAP, most studies focus on 
parallel-system design or disaster recovery plans without 
considering network configuration. Moreover, they seldom 
consider the impact of malicious attacks, which have 
different characteristics from natural disasters. To address 
this research gap, we propose a novel redundancy 
allocation scheme, which considers the impact of targeted 
malicious attacks, and apply the concept to network 
configuration design. To the best of our knowledge, this is 
one of the first papers to model malicious attacks with 
traditional RAPs. Previous research has shown that 
attempts to model attack-defense scenarios in an abstract, 
mathematical way are non-trivial [7, 8]. In addition, the 
issues remain unsolved [9]. 

The remainder of this paper is organized as follows. In 
Section 2, we formulate the primal RAPMA (Redundancy 
Allocation Problem considering Malicious Attacks) and 
ARS (Attack Redundancy Strategy) problems. In Section 3, 
we propose a Lagrangean Relaxation-based solution 
approach to the problems. The results of computational 
experiments conducted to evaluate the proposed solution 
are reported in Section 4. Finally, in Section 5, we 
summarize our conclusions and indicate possible future 
research directions. 
 
2. Problem Formulation 
 
2.1 Problem Description and Assumptions 
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The problem we address is: How can network 
administrators deploy redundant components to minimize 
the vulnerability of a network to hazardous events and 
malicious attacks? The ultimate goal is to provide 
continuous services and improve survivability by 
deploying redundant components. Obviously, an attacker 
will try to compromise as many network nodes as possible 
with limited attack resources. Research shows that 
attackers and defenders constantly change their respective 
strategies – a process that can be likened to the use of a 
lance and a targe. 

We model the defined problem as a min-max problem 
in order to formulate attack-defense scenarios. The inner 
problem, defined by the ARS model, represents that an 
attacker tries to maximize a network’s vulnerability to 
hazardous events by identifying attack targets and 
formulating efficient attack budget allocation strategies. 
The outer problem, defined by the RAPMA model, 
represents that, to minimize the maximized total 
vulnerability, a defender must deploy redundant 
components to provide continuous services. 

We assume that each node in a network is composed of 
just one primary component and several redundant 
components. To compromise a node, an attacker must find 
a suitable path to it and compromise all the intermediate 
nodes on that path. Furthermore, a node is considered 
compromised if and only if the primary component of the 
node has been compromised by applying an attack budget 
that is equal to or more than a predefined threshold. Note 
that an attacker will never try to compromise redundant 
components if the associated primary component has not 
been compromised. To consider the worst case scenario, we 
assume both the attacker and the defender are smart enough 
to obtain complete information about the targeted network 
in advance. 

 
2.2 Problem Formulation for the RAPMA Model 
 

We now define the notations used in this paper and 
formulate the problem. 

Table 1. 
Given Parameters 

Notation Description 
N  The index set of all nodes in the network
B The defender’s total budget 
A The attacker’s total budget 
W The index set of all Origin-Destination (O-D) 

pairs, where the origin is the node s that the 
attacker occupies and the destination is a node 
i in the network (where i, s∈N) 

Pw The index set of all candidate paths for an O-D 
pair w, where w∈W

δpi 
The indicator function, which is 1 if node i is on 
path p, and 0 otherwise (where i∈N, p∈Pw) 

D The index set of all potentially hazardous 

events with probability Pd, where Pd∈(0, 1), ∑
Pd=1 

ri The index set of all components that provide 
the same service function in node i, where i∈N

leveli The minimum number of redundancy levels of 
node i predefined by the defender, where i∈N

cim The cost of component m of node i, where 
i∈N, m∈ri 

gim(cim) The minimum threshold of the attack budget 
required to compromise a component m of 
node i, where i∈N, m∈ri 

 
Table 2. 

Decision Variables 

Notation Description 
αim 1 if a component m of node i is selected to play 

the role of primary component for the provision 
of services, and 0 otherwise (where i∈N, m∈ri)

βim 1 if a component m of node i is selected as a
redundant component to provide the function 
of fault tolerance, and 0 otherwise (where i∈N, 
m∈ri)

gim The attack budget allocated to a component m
of node i, where i∈N, m∈ri 

fimd(gim) The vulnerability of a component m of node i to 
a hazardous event d, where i∈N, m∈ri, d∈D, 
fimd(gim) ∈(0, 1)

yi 1 if the node i is compromised, and 0 
otherwise (where i∈N) 

xp 1 if the path p is selected as the attack path, 
and 0 otherwise (where p∈ Pw) 

 
Objective function:  

,
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From the defender’s perspective, the objective function 
is to minimize the network’s maximized vulnerability to 
hazardous events. Constraints (IP 1.1) ~ (IP 1.6) jointly 
require that when a node is chosen for attack, there must be 
exactly one path from the attacker’s initial position, s, to 
that node, and each node on the path must have been 
compromised. These constraints are called “continuity 
constraints.” Constraint (IP 1.4) stipulates that a node is 
considered to be compromised if and only if the attack 
budget applied to it is more than or equal to the minimum 
threshold. Constraint (IP 1.9) requires that the roles of 
components are mutually exclusive. The other constraints 
are straightforward. 

 
2.3 Problem Formulation for the ARS Model 
 

To solve the primal RAPMA problem, we first analyze 
its inner problem, denoted as (IP 2), and the ARS model. 
The given parameters and decision variables of the ARS 
model are the same as those of the RAPMA model, except 
that the decision variables αim and βim become given 
parameters in the ARS model. Constraints (IP 2.1)~(IP 2.6) 
and (IP 2.7)~(IP 2.8) of the ARS model are the same as (IP 
1.1)~(IP 1.6) and (IP 1.14)~(IP 1.15) respectively. 
 
3. Solution Approaches 
 
3.1 Solution Approach for the ARS Model 
 

The original objective function in (IP 2) is a value 
calculated by a series of products, which makes the 
problem complicated due to its non-linearity. Hence, we 
transform it into logarithmic form without changing its 
optimality. We also assume that fimd(gim) follows an 
exponential distribution with λ, which indicates that the 
marginal vulnerability will be reduced by the additional 
budget allocated to a component. The transformation 
procedure and the result are as follows: 
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By applying the Lagrangean relaxation method [10] 

with a vector of Lagrangean multipliers, we can transform 
(IP 2) into the following Lagrangean relaxation problem 
(LR 1), where constraints (IP 2-1), (IP 2-2), and (IP 2-4) 
are relaxed.  
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By definition, μ1, μ2, and μ3 are the vectors of {μi
1}, 

{μi
2}, and {μi

3} respectively, where μ1 and μ3 are 
non-negative and μ2 is unrestricted. To solve (LR 1) 
optimally, we decompose it into three independent and 
easily solvable subproblems as follows. 
Subproblem 1 (related to decision variable xp) 

( ),

1 2min
w s i

i p pi i p
i N w W p P i N p P

x xμ δ μ
∈ ∈ ∈ ∈ ∈

+∑∑∑ ∑ ∑  (SUB 1) 

subject to (LR 1.1) and (LR 1.2). 
As shown in TABLE I, each O-D pair w originates from 

an attacker’s position, s, and ends at a target node i, where i, 
s∈N. Therefore, (SUB 1) can be transformed to (SUB 1’) 
as follows. 

( ),

1 2 2min
w w s s

i p pi i p s p
i N w W p P w W p P p P

x x xμ δ μ μ
∈ ∈ ∈ ∈ ∈ ∈

+ +∑∑∑ ∑∑ ∑  (SUB 1’) 

subject to (LR 1.1) and (LR 1.2). 
The last term can be ignored because no path starts and 

ends at the same node. After the transformation, (SUB 1’) 
can be decomposed into a series of |W| independent 
subproblems whose objective functions take the following 
form: 
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(SUB 1’’) can be considered a minimum cost path 
problem with node costs (μj

1δpj+μi
2). Because of the 

non-negative costs, we can apply Dijkstra’s shortest path 
algorithm to optimally solve this subproblem. The time 
complexity of (SUB 1) is O(|N|2) because the source of 
each path is the same and Dijkstra’s algorithm only needs 
to be implemented once. 
Subproblem 1.2 (related to decision variables yi) 
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∈

− + − −∑  (SUB 2) 

subject to (LR 1.3).  
(SUB 2) can be further decomposed into a series of |N| 

independent subproblems that can be solved optimally. 
Obviously, to obtain the optimal solution to this 
subproblem, we only set the value of yi with a 
corresponding negative coefficient to 1. The time 
complexity of (SUB 2) is O(|N|). 
Subproblem 1.3 (related to decision variables gim) 
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subject to (LR 1.4) and (LR 1.5). 
(SUB 3), is a typical fractional (continuous) knapsack 

problem, which we solve optimally by using the dynamic 
programming technique. Initially, the problem is divided 
into A phases and exactly one unit of the attack budget is 
allocated in each phase. Obviously, a “precious” resource 
will be allocated to a component that can contribute the 
greatest value to the objective function in each phase. The 
solution procedure is repeated until all of the attacker’s 
resources are exhausted. The total time complexity of 
(SUB 3) is O(A|C|), where C is the number of components 
and A is the total attack budget. 

According to the weak Lagrangean duality theorem 
[10], the optimal value of the problem (LR 1) is, by its 
nature, the lower bound (for minimization problems) of the 
objective function’s value in the primal problem (IP 2). The 
tightest Lagrangean lower bound can be derived by tuning 
the Lagrangean multipliers, i.e., by maximizing the (LR 1) 
problem. Although there are several ways to solve this 
problem, the subgradient optimization technique [10] is the 
most popular. 
Getting Primal Feasible Solutions 

The solutions to (LR 1) and the multipliers provide 
some hints about deriving a heuristic to improve the 
solution quality of (IP 2). Here, we describe our proposed 
heuristic. The solution of (SUB 1) is considered as an 
initial attack strategy for sequential adjustment. If the 

strategy satisfies all constraints on an attacker’s behavior, it 
will form the trunk of the ultimate attack tree. However, if 
the attack strategy violates any of the problem’s constraints, 
the wasted attack budget, which has been allocated to a leaf 
node, will be recycled and reallocated to uncompromised 
nodes according to the associated weight  
 

w

p pi

i N w W p P

x δ
∈ ∈ ∈

∑∑∑ . 

After the main attack tree has been constructed, any 
residual attack budget will be allocated to the reachable 
redundant components, which are associated with the 
compromised nodes, according to each node’s side effect 
on the objective function. Finally, a collection of primal 
feasible solutions is found. 
 
3.2 Solution Approach for the RAPMA Model 
 

Since it is assumed that an attacker and a defender have 
complete information about the “battle”, each one is 
capable of maximizing his benefits based on his opponent’s 
strategy. In the ARS model, all decision variables about the 
defense strategy are assumed to be known in advance; 
therefore, the attacker can launch malicious attacks to 
paralyze the network system. After the ARS model is 
solved, its solution, which can be regarded as the attacker’s 
behavior, becomes the input of the RAPMA model. In this 
phase, all decision variables related to the attacker’s 
behavior become known; as a result, the defender can 
dynamically deploy redundant components to strengthen 
the survivability of the whole network. 

To solve the RAPMA model, we propose a 
degree-based algorithm. Initially, all nodes are sorted in 
descending order according to the associated weight 

w

p pi

i N w W p P

x δ
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∑∑∑ .  

A node with a higher weight indicates that the node is 
relatively important to the attacker when he launches an 
attack on the network. If the attacker successfully 
compromises the node, we upgrade its protection level, i.e., 
more defense budget will be allocated to it; otherwise, we 
downgrade it and recycle the allocated defense budget. 
After the amount of defense budget allocated to the 
primary components has been determined, any residual 
budget will be allocated to redundant components to 
maximize their survivability according to their contribution 
to the network’s protection. 
 
4. Computational Experiments 
 
4.1 Experiment Environments 
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We choose six popular network topologies, i.e., grid, 

cellular, random, ring, tree, and star networks, for our 
experiments to verify the scalability and applicability of 
our proposed solution approach. The experiments can be 
divided into two parts; those for the ARS model and those 
for the RAPMA model. In the first part, we compare the 
performance of two simple algorithms, namely a minimum 
cost spanning tree algorithm (SA1) and a greedy-based 
algorithm (SA2), with that of our proposed heuristic. In the 
second part, we compare a uniform-based budget allocation 
strategy (B1) and a damage-based budget allocation 
strategy (B2) with our proposed heuristic.  

 
4.2 Experiment Results for the ARS Model 
 

Figure 1. Vulnerability of Different Network Topologies at 
Different Scales to Verify Scalability (G: Grid, C: Cellular, R: 
Random; Small: 16 nodes, Medium: 64 nodes, Large: 196 

nodes) 

Figure 2. Vulnerability of Different Medium-size Network 
Topologies (49 nodes) to Verify Applicability 

 
In Figures 1 and 2, “Vulnerability” represents the 

possibility that hazardous events might cripple the whole 
network. From Figure 1, we observe that, in every network 
topology and at every scale, our proposed heuristic 
outperforms SA1 and SA2, which only consider local 
information. The reason is that our proposed heuristic 
makes use of hints provided by Lagrangean Relaxation to 
constantly adjust its direction based on a global perspective. 
Hence, the solution quality is definitely better than that of 
the two simple algorithms. The graph in Figure 2 shows 
that our heuristic is applicable to a variety of topologies. 

We also observe that SA1, SA2, and our heuristic adopt the 
same attack strategy in a ring network. This may because, 
in a ring network, each node only has one adjacent 
neighbor; therefore, no matter which heuristic (with the 
same total attack budget) we adopt, only one kind of 
solution will be obtained. 

 
4.3 Experiment Results for the RAPMA Model 
 

Figure 3. Survivability of Different Network Topologies at 
Different Scales to Verify Scalability (G: Grid, C: Cellular, R: 
Random; Small: 16 nodes, Medium: 64 nodes, Large: 196 

nodes) 

Figure 4. Survivability of Different Medium-size Network 
Topologies (49 nodes) to Verify Applicability 

 
In Figures 3 and 4, “Survivability” is antithetic to the 

concept of vulnerability and is calculated by 
(1-vulnerability). From Figure 3, we observe that our 
heuristic can handle a large-scale problem and outperforms 
the compared heuristics in terms of survivability. B1 
allocates the same budget to each node in a network; thus, 
no dynamic adjustment will be made in response to a 
change in the attack strategy. Meanwhile, B2 increases the 
survivability of grid and cellular networks, but the solution 
quality declines for random networks. This may be due to 
the structure of the random network topology. Grid and 
cellular networks are relatively robust by nature when 
targeted by malicious attacks; however, random networks 
are vulnerable to such attacks. The graph in Figure 4 shows 
that our heuristic can be applied to various topologies. It is 
noteworthy that B2 can increase survivability as a near 
optimal solution, and it is easier to implement in terms of 
complexity. Therefore, if time is the most important issue 
in developing a solution approach, B2 would be the more 
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appropriate budget allocation strategy. 
 
5. Conclusion 
 

We have proposed a new solution approach based on 
redundancy allocation to protect networks against 
man-made and natural threats. Although it is impossible to 
prevent attackers from penetrating networks, by 
implementing effective redundancy allocation strategies, 
network administrators can establish solid defense 
mechanisms to ensure continuity of service. We therefore 
formulate attack-defense scenarios as a two-level min-max 
mathematical model, in which an attacker tries to maximize 
a network’s vulnerability to hazardous events. Meanwhile, 
a defender deploys redundant components to minimize the 
maximized total vulnerability in order to provide 
continuous services. In the model, we replace random 
attacks, which are governed by probability, with malicious 
targeted attacks launched under continuity constraints to 
reflect a current attack trend.  

The results of computational experiments demonstrate 
that our proposed solution approaches outperform the 
compared algorithms. Moreover, the results for scalability 
and applicability show that our heuristics can handle 
large-scale problems, adapt to different attack/defense 
scenarios, and be applied to all kinds of network 
topologies.  

The well-formulated mathematical model represents the 
major contribution of this work. We have researched the 
respective strategies of attackers and defenders, and 
identified their objectives and associated constraints. 
According to our survey, few works transform attackers’ 
real behavior into mathematical programming problems in 
the context of survivability. Moreover, in the realm of RAP, 
few works consider the impact of targeted attacks and 
hazardous events simultaneously; however, those potential 
malicious risks indeed bring severe threats. In other words, 
our model is applicable to a variety of real-world scenarios. 

We believe our model can be extended to different 
attack-defense scenarios in the context of survivability. In 
our future work, we will investigate the extent to which our 
methods can be applied to scenarios involving the 
interactive dependency of network nodes. We will also 
examine specific application parameters of other real-world 
network environments, such as wireless sensor networks 
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