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Abstract 
In this paper, we propose a mathematical programming 
model to describe a network attack scenario. In this 
problem, the attacker’s objective is to compromise 
multiple core nodes at minimum total attack cost. 
During the attack actions, the attacker may gain some 
experience from previous attacks to further reduce the 
attack costs in the future. Moreover, he can also pay 
extra fee to escalate his authority on a compromised 
node to get higher user privileges, so that he will have 
higher authority to access more information on the 
node. We measure the impact incurred by information 
leakage in our model, and adopt some Simulated 
Annealing-based algorithms to solve the problem. 

 
1. Introduction 
Internet provides us with many convenient services, 
such as video conference, file transfer, and E-
commerce applications. However, it also brings us 
some threats to information security and privacy, 
because cyber criminals can connect to others’ 
computers to steal information or modify some 
important data via Internet.  

Since the Internet has become essential to business 
operations, numbers of trades are accomplished 
through computer network. Some critical data are 
usually stored in computers or other multimedia 
devices. Therefore, protecting these data is an 
important issue for enterprises. A remote backup can 
ensure that systems can provide uninterrupted services 
or quickly recover from a disaster or a malicious attack. 
In this manner, critical data is copied and stored in 
different centers, all of which can provide the main 
service independently. Consequently, an attacker who 
wants to completely crash business service or networks 
may need to compromise all of these data centers 
which have the capability of providing essential 
services.  

Furthermore, in an attack scenario, after 
compromising a node, the attacker can choose whether 
to probe this node and access valuable information or 
not. For instance, the attacker may gain some useful 
information like the routing tables which can help him 
to get the whole picture of the network topology. 
Another example is that the attacker may access some 
vital information like the customer data of an E-
commerce company. When this kind of information is 

stolen, it not only causes some privacy issues but also 
leads to financial loss. 

To access more information, the attacker may need 
to escalate to gain more user rights. In [1], the author 
analyzed the attack behavior and found some characters: 
an attacker in the low user-level may usually exploit 
several vulnerabilities on a computer system to get a 
certain privilege escalation. They indicated that the 
attacker at a certain user- level owned the 
corresponding user privileges and resources of that 
system. Thus, how to manage the vulnerability well is 
important for protecting a node from being attack. 
According to [2], the author measured the total effect of 
vulnerabilities in a system. Therefore, managing 
vulnerabilities well would be an important mission in 
computer security. 

When an attacker compromises a node, he may gain 
experience and escalated authorities. Using the 
experience efficiently he can reduce the costs of future 
attacks. For example, when the attacker compromises a 
node, he may learn how to intrude other systems via the 
same kind of vulnerabilities on the compromised node. 
In [3], the author conducted intrusion experiment for 
empirical data. By analyzing the collected data, the 
author split the intrusion process into three phases 
based on attacker behavior: the learning phase, the 
standard attack phase, and the innovation phase. 
McDermott et al. [4] pointed out that potential 
intelligent intruders will more probably attack the 
target as time goes by. Therefore, the intruder cannot 
compromise the target today may be more likely to 
compromise the target in the future. 

Because the budget is finite, it is important for a 
network operator/defender to allocate his budget 
efficiently. However, there are seldom theoretical 
studies modeling the attacker behavior and the offense-
defense scenarios in mathematical ways [5]. Therefore, 
we propose a mathematical model. It describes and 
formulates the effect of Accumulated Experience and 
Escalation of attackers (AEE) in a quantitative way. 

In the AEE Model, the attacker’s objective is to 
compromise multiple core nodes and minimize the total 
attack cost, which includes the cost of compromising 
nodes and escalating his authorities on each 
compromised node.  

The remainder of this paper is organized as follow. 
In Section 2, a mathematical formulation of the attack 
scenario is proposed. In Section 3, solution approaches 



based on the Simulated Annealing methods are 
presented. The computational results of the 
experiments are showed in Section 4. Finally, Section 5 
is the conclusions and future work about this research. 

 
2. Problem Formulation 

In this section, we describe the problem and propose 
a mathematical model with specific assumptions and 
problem objective to the target network. The attacker’s 
objective is to compromise multiple core nodes in the 
given network and to minimize the total attack cost as 
possibly as he could. In addition, he may gain 
experience from his previous attacks to reduce the costs 
of the future attacks.  

An attacker can gain two kinds of experience during 
an attack, one comes from compromising a node, and 
the other comes from escalating his authority on the 
compromised node. The first kind is gained from 
previous attacks, and is used to reduce the costs of 
future attacks. The second kind of experience is gained 
from the escalation on the compromised node. After 
compromising a node, the attacker may pay an extra fee 
to conduct some authority escalation on the node to get 
more powerful user rights, which allow him to access 
more useful information to further reduce the costs of 
attacks and accumulate impact incurred by information 
leakage on the compromised nodes. An attacker could 
pay various extra fees in order to have different levels 
of escalation, because there are several levels of user 
privileges in a system. The user privileges increase as 
the attacker pays more of his budget for them.  

The information derived from a compromised node 
may include important financial data of an enterprise or 
secret files, such as personnel data, or the password of a 
network administrator. This may cause critical loss of 
the network and serious damage to the enterprise. For 
this reason, our model also considers the information 
value corresponding to an impact factor to evaluate the 
damage incurred by information leakage. 

We assume that the target network is at the 
Autonomous System (AS) level network; hence, an 
attacker needs to compromise the core node step-by-
step. Because the number of vulnerabilities on each 
node is different, an attacker who wants to compromise 
a node may need to pay different costs related to the 
defense budget allocated to the node and the 
vulnerabilities on it. We also assume that there are 
several levels of user privileges on a system. Thus, an 
attacker could pay various levels of extra budget to do 
different levels of escalation. The more costs he pays, 
the more user rights he could gain. We also use an 
impact factor to evaluate the information an attacker 
access from a compromised node. 

 
2.1 Problem Formulation of the AEE Model 

We model the above problem as a mathematical 
programming problem. The given parameters are 
defined as Table 1. 

 
Table 1 Given Parameters  

Notation Description 

N The index set of all nodes in the network 

D The index set of all core nodes in the 
network 

W 
The index set of all Origin-Destination 
pairs (O-D pairs), where the origin is node 
o; and the core nodes are d (where d∈D) 

Ei 

The index set of all the privilege levels on 
node i (e.g., 0, 1, 2, …), where i∈N and 
level 0 means node i is compromised 
without escalation. 

Li 
The index set of all the level on node i 
exclusive of level 0, where i∈N 

Pw The index set of all candidate paths of an 
O-D pair w, where w∈W 

δpijl 

An indicator function, which is 1 if node j 
(at privilege level l) is the pervious node of 
node i on path p, and 0 otherwise (where i, 
j∈N, p∈ Pw, l∈Ei) 

σpil 
An indicator function, which is 1 if of node 
i (at privilege level l) is on path p, and 0 
otherwise (where p∈Pw, i∈N, l∈Ei) 

S The index set of all stages 

S(k) 
The index set of the stage 1 to stage k-1, 
where k∈S 

e
ile  

The experience gained by the attacker after 
escalating to level l on node i, where i∈N, 
l∈ Ei 

c
ie  

The experience gained by the attacker after 
compromising node i, where i∈N 

ilI  
The impact incurred by accessing 
information from level l on node i after 
escalation, where i∈N, l∈Ei 

T 
The threshold of total impact, which is the 
damage level that the attacker needs to 
reach. 

B The total defense budget 
 

In this formulation, the attack sequence is 
represented by a term, stage. Stage n means the attack 
is launched on the n-th step of the attack action.  As 
noted earlier, once the attacker escalates to a higher 
level on a compromised node, he might know some 
links he did not know before escalating to the level. 
Thus, the network we modeled here can be viewed as 
an artificial two-dimensional network. The decision 
variables are defined as Table 2. 

 
Table 2 Decision Variables  

Notation Description 

ysil 
1 if node i is compromised at stage s and 
escalated to level l of the node, and 0 
otherwise (where s∈S, i∈N, l∈Ei) 

xp 
1 if path p is selected as the attack path, 
and 0 otherwise (where p∈ Pw) 

c
ib  

The defense budget allocated to protect 
node i from being compromised, where 
i∈N 

e
ilb  

The defense budget allocated to protect 
node i from being escalated, where i∈N, 
l∈Li 



ˆ ( )c c
i ia b  

The threshold of the attack budget required 
to compromise node i, where i∈N 

ˆ ( )e e
il ila b  

The threshold of the attack budget required 
to escalate to level l on node i, where i∈N, 
l∈Li 

 
The objective is to minimize attack cost by adjusting 

which nodes and levels to attack and which attack 
sequence to adopt. In this problem, an attacker tries to 
compromise multiple core nodes using the minimized 
total attack cost. Thus, we formulate attacker behavior 
as an optimization problem, the AEE Model. 
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In this model, the attacker’s objective is to 
compromise multiple core nodes using the minimized 
total attack cost. The compromised costs and escalation 
costs would be reduced by experience factor, 

and , which are values between 0 and 1. The 
effect of the experience would be showed as 
accumulated multiplied forms. Constraint (IP 1.4) 
requires that if a node is compromised at stage k, the 
ancestor node of that node on the selected attack path 
must have been compromised at one of the stages 1 to 
k-1 before. 

c
ie e

ile

 
3. Solution Approach  
3.1 Solution Approach for the AEE Model 

In this section, the AEE Model [6] is solved by 
Simulated Annealing (SA) based heuristics. We 
develop two-phase SA-based approaches to solve the 
problem. The first phase involves implementing the SA 
procedure and adjusting the attack sequence, attack tree 

and escalation level. During the first phase, the 10 best 
solutions are saved as the first step results. Next, in the 
second phase, we use the results from the first phase as 
initial solutions, and search for neighbor solutions by 
adjusting the attack sequence only. Finally, the smallest 
objective value is saved and which is the best solution 
we found by this approach.  

We use three different initial solutions and several 
methods to search for the neighbor solutions based on 
the approach we developed in last paragraph. The first 
initial solution is an algorithm that is similar to Prim’s 
algorithm, which first generates a minimum cost 
spanning tree. Next, we prune unnecessary nodes, i.e., 
nodes that are not core nodes or intermediate nodes on 
the paths towards core nodes. Finally, the escalation 
levels are adjusted to satisfy the corresponding 
constraints. The second solution is a random-based 
algorithm. The difference between this solution and the 
first one is the criteria for choosing the next node. In 
this case, when choosing the next target node, we 
always choose a reachable node at random as the next 
attack node, instead of choosing the node with the 
smallest weight. The third solution is similar to the first 
one; the weight of each node is the ratio of the cost to 
experience. The time complexity of all the initial 
solutions is O(|N|log|N|). 

The approaches for searching for neighbor solutions 
can be divided into three parts: change of the attack 
sequence, change of the attack tree, and change of the 
escalation levels of compromised nodes. We use two 
different techniques to change the attack sequence. The 
first rearranges the whole traversed sequence. We start 
from the source node and randomly choose a 
compromised node that can be reached from the source 
node and re-label its sequence. Then, we repeat this 
process until all the compromised nodes are visited 
again. The second technique randomly exchanges the 
attack sequences of two compromised nodes. We also 
divide methods of changing the attack tree into two 
parts. The first a compromised node is randomly 
chosen on the attack tree by the attacker and the 
compromised nodes, which were compromised after 
the choose node, are reset to uncompromised. Then, we 
start from the chosen node to find other paths randomly 
in order to complete the attack. Therefore, the new 
attack tree will be the same with the original tree before 
the node was chosen. The second method only adjusts 
small parts of the original attack tree. We use two 
methods for this task. One changes the path between 
two compromised nodes that are adjacent to each other 
in the attack tree and adjust the attack sequence if 
necessary. The other compromises an additional node 
that is not necessary for the original attack tree or it 
removes an unnecessary node from the original attack 
tree. This is reasonable because the attacker may gain 
some additional experience from the extra attack and 
that experience may help him reduce the cost of future 
attacks. Finally, we also develop two ways to change 
the escalation levels. One randomly exchanges the 
escalation levels on two compromised nodes. The other 
escalates to a higher level or drops to a lower level on a 
randomly chosen compromised node. Although we 



develop several methods to search neighbor solutions, 
we only choose one approach at random to search for 
neighbor solutions in each loop. The time complexity 
of searching for neighbor solutions is O(|N|log|N|). 
 
4. Computation Experiments 
4.1 Computation Experiments with the AEE 
Model 

To measure the effective of our proposed algorithms, 
we design the simple algorithm 1 S1. It can be divided 
into an outer part and an inner part. At outer loop, we 
ignore the effect of experience and then run the Prim’s 
Algorithm and calculate the total cost. Next, starting 
from the source and replacing the weight of each node 
with the value that the original nodal cost subtracts the 
effect of its experience. We start from the source and 
replace the weight of each node with the value that the 
original nodal cost subtracts the effect of its experience. 
The effect would be calculated by the experience factor 
of the current target node multiplying the total cost of 
all the nodes which are compromised after the current 
node on the attack tree. Then, we run the SA procedure 
which is the inner loop of this heuristic to adjust the 
sequence and escalation levels.  

We use different initial solutions to distinguish our 
approaches. The first one is the Prim-based algorithm, 
and its corresponding SA approach is denoted as 
TSA_Prim. The second one is the approach which 
randomly chooses the next node. Its corresponding SA 
solution is denoted as TSA_Random. The last one is the 
solution using the ratio between the experience and the 
cost of a node. Its corresponding approach is denoted as 
TSA_Weight.  
 
4.2 Experiment Environment 

The SA parameter α is set to 0.7, and β is set to 1.3. 
The initial temperature T0 is initialized to 1.0 and the 
final temperature is set to T0/1000. At each temperature, 
we control the SA to repeat b0 times, and initialize b0 to 
1000. We randomly assign the experience value and the 
number of vulnerabilities on each node. 

To evaluate the quality of our approaches, we 
compare our solutions to the exhaustive search in three 
small networks with 9 nodes which are grid, random 
and scale-free networks. We consider one escalation 
level in the three small networks. In other larger size 
networks, we use two ways to evaluate the quality of 
our solutions. One is to compare our solutions with S1. 
The other is to design two networks as showed in 
figures 1 and 2, in which we can find the optimal 
solutions intuitively. In Figure 1, we set the second 
type and the third type nodes and the last node of the 
first type nodes as core nodes.  

In order to evaluate the robustness of networks, we 
also consider three types of networks (i.e., grid, random, 
and scale-free networks). Each network could consist 
of 25, 49, 81, 100, or 144 nodes, each of which could 
have three escalation levels. 

 The cost function here is defined as a concave 

form, ln ( 1 )b Mi
V i

×
+ , where bi is the budget allocated to 

node i and Vi , a given parameter here, is the number of 

the vulnerabilities on node i and M is a constant to 
adjust the proportion of bi and Vi. The cost functions of 
different escalation levels on nodes are also defined as 
this form. 

We also design three budget allocation strategies. 
The first policy is a uniform allocation strategy. Each 
node is allocated the same defense budget. The second 
one is a degree-based budget allocation. Each node is 
allocated budget according to the percentage of its 
degree over the total degree of the network. The last 
one is the vulnerability-based budget allocation. Budget 
allocated to each node depends on the ratio of the 
vulnerabilities on each node over total vulnerabilities in 
the networks. As noted earlier, the network can be 
viewed as a two-dimensional network. Thus, while 
allocating defense budget to escalation levels, we can 
treat the different levels on a node as different nodes in 
this artificial two-dimensional network. Consequently, 
we can use this property to allocate budget to each level 
in degree-based and uniform defense budget allocation 
strategies.  

 

     
 

Fig. 1 Experiment Topology 1 
 

 
Fig. 2 Experiment Topology 2 
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Fig. 3 The Error Rate of Networks with 9 nodes   
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Figures 3 to 5 show the quality of our solutions 
under the target networks. The error rate of our 
solutions under these experiment networks and the 
networks with 9 nodes is approximate under 0.1%.  

Figure 6 compares the quality of the proposed 
algorithms with S1 in scale-free networks. Our 
heuristics perform better than S1 obviously. The quality 
of the results of the approach TSA_Weight is better than 
other approaches on average. Thus, we use 
TSA_Weight as the solution approach in the following 
comparisons.  Fig. 5 The Error Rate of Proposed Approaches under 

Experimental Networks 2 For Figures 7 and 8, we could observe that networks 
with degree-based defense budget allocation strategy 
are the most robust. If a node with more connectivity, it 
may be also a shortcut in a network. Thus, the attacker 
could use this node to reach his targets more quickly. 
Hence, if the defender protects these nodes more, it 
would become more difficult for the attacker to reach 
the target nodes. The vulnerability-based defense 
budget allocation is the most vulnerable way to protect 
all the networks. The reason is that if a node is 
vulnerable, it may be allocated much budget in this 
allocation strategy. But if the node is on the edge of the 
network and the attacker could also reach his goal 
without compromising it. 
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Fig. 6 Comparison of Proposed Approaches under Scale-free 
Networks with Degree-based Defense Budget Allocation 

Strategy  
5. Conclusion   

We have addressed the issues of attacker behavior 
under network defense-attack scenario. We focus on 
the learning skill of intelligent attackers and how it 
could help the attackers to reduce their costs in the 
future. This concept is generalized as a term, 
experience, in this paper. We also modeled the 
escalation of attackers and evaluated the impact 
incurred by information leakage. As a result, the 
attacker would try to minimize the total attack cost 
under these issues. In response, the network defender 
would try to maximize the total attack cost by a proper 
defense budget allocation strategy.  
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Fig. 7 Comparison of Random Networks with Different 
Defense Budget Allocation Strategies The key contribution of this paper is the 

development of a max-min mathematical model which 
well formulated the interaction between attackers and 
defenders in the real world. We have also solved this 
model by several proposed heuristics. To the best of 
our knowledge, very little research is done to model the 
real-world attack behavior in the offense-defense 
sceneries by this approach. 

 



Another contribution is we have evaluated the 
robustness of different networks with different budget 
allocation strategies by the minimized total attack cost.  

In this paper we assumed that information probed 
from each level on a compromised node would not be 
duplicated. Thus, the experience and the impact of 
information would be accumulated continuously. By 
this assumption, an attacker is very skillful and 
intelligent that he would not pay any unless fee to gain 
duplicated information. Therefore, we could further 
discuss the duplicated information issues in the future.  

Moreover, in this paper, we only discuss the 
behavior of attackers. Considering the attack and 
defend scenarios, when the attacker decides his attack 
strategy, the network defender readjusts his resource 
allocation strategy to resist the attacks. In response, the 
attacker will change his strategy again to find the most 
cost efficient approach. There may be some serial 
interactions between the defender and the attacker. 
Therefore, we will focus on how to appropriately 
allocates the limited defense resources of operator.  
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