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Abstract

Among various access network topologies, the tree topology is the most popular due to its simplicity and relatively low cost. A salient

example is the CATV network. In this paper, we consider the tree-based access network design problem where the operational cost and the

fixed installation cost are jointly minimized. The problem is formulated as a combinatorial optimization problem, where the difficulty of

solving a Steiner tree problem typically encountered in a tree-based topological design problem is particularly circumvented. The basic

approach to the algorithm development is Lagrangean relaxation and the subgradient method. In the computational experiments, the

proposed algorithm calculates near-optimal solutions within 3.2% of an optimal solution in 1 min of CPU time for test networks of up to

26 nodes.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A network design problem can be decomposed into two

main parts, i.e. the access network design problem and the

backbone network design problem. Typical network

topology could be shown in Fig. 1.

In Fig. 1, we could see that the backbone network which is

connected by the backbone router is usually a mesh topology

for reliability concern. In designing an access network, a

number of topologies may be selected, e.g. tree, mesh and

star. However, the following two trends will strongly affect

the access network topology eventually chosen. First, low

cost, high bandwidth and reliable transmission technologies,

such as fiber optics, have become popular. Second, traffic

aggregation makes economical sense since multiplexing/

demultiplexing is cheap and the cost of leasing or buying

bandwidth often reflects economies-of-scale [2]. Both trends

have made the tree topology more promising than others.

Research has been conducted to address the access

network design problem. Gavish [4] models the network
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design problem by a rigorous mathematical formulation and

solves the problem by Lagrangean relaxation techniques.

However, in Ref. [4] each cluster of end users is connected

to the network directly via a dedicated line in order to

simplify the formulation.

Andrew [2] proposes an integer programming approach

to solve the access network design problem, where the

objective function is to minimize the access network

deployment cost subject to flow constraints. Linear

programming relaxation is then applied to solve the integer

programming problem. Andrew provides performance

guarantees independent of the network and the traffic

volume under the weak assumption on the cost structure.

Routen [7] proposes genetic and neural network approaches

to solve the access network design problem. However, no

simulation results are reported in Ref. [7] to evaluate the

proposed approaches.

In this paper, the minimum-cost tree-based access

network design problem is considered. The problem is

formulated as a combinatorial optimization problem where

the objective function is to minimize the total access

network design cost subject to the multicast tree constraint.

Then a sophisticated mathematical formulation is derived to

facilitate the application of efficient and effective solution
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Fig. 1. Typical network topology (backboneC access network).
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approaches and to particularly circumvent the difficulty in

solving a Steiner tree problem, which often significantly

complicates this type of tree-based network design

problems.

The cost considered in the access network design

problem consists of the operational cost and the fixed

installation cost. The fixed installation cost is the conduit

construction cost, which is usually the dominant part of the

total cost. We model the operational cost as the routing cost

on the links. It is assumed that the upstream traffic is

relatively small as compared to the downstream traffic.

Therefore, only the downstream routing cost is considered

in this paper. In order to provide a more generic problem

formulation, multicasting traffic instead of broadcasting and

unicasting traffic is considered in this paper. In addition, we

investigate two different types of routing cost, namely linear

and concave cost function. From the computational

experiments, the solution quality for concave routing cost

function is even better than linear routing cost function.

The remainder of this paper is organized as follows.

In Section 2, a mathematical formulation of the access

network design problem is proposed. In Section 3, a

reformulation of the access network design problem,

which avoids solving the Steiner tree problem, is proposed.

In Section 4, a dual approach based on Lagrangean

relaxation is presented. In Section 5, heuristics for

calculating primal feasible solutions are discussed. In

Section 6, computational results are reported. In Section 7,

concave routing cost function is studied. Section 8 finally

summarizes and concludes this paper.
2. Access network design problem formulation

An access network is modeled as a graph, where the

processors are represented by nodes and the communication
channels are represented by arcs. The notation adopted in

the problem formulation is listed below.

T The set of all spanning trees

Tg The set of all trees for multicast group g

G The set of all multicast groups

L The set of all links in the graph

N The set of all nodes in the graph

dtl The indicator function which is 1 if link l is on tree t

and 0 otherwise

sgtl The indicator function which is 1 if link l is on tree t

for multicast group g and 0 otherwise

rg Traffic requirement of multicast group g

al Unit transmission cost associated with link l

bl Fixed installation cost associated with link l

M An arbitrarily large number
The decision variables for the access network design

problem are denoted as follows.

ygt 1 if tree t is adopted by multicast group g, and 0

otherwise

zt 1 if spanning tree t is selected to be shared by all the

multicast groups and 0 otherwise
The access network design problem is then formulated as

the following combinatorial optimization problem (IP1)

ZIP1 Z min
X
l2L

X
g2G

X
t2Tg

rgalsgtlygt C
X
l2L

X
t2T

bldtlzt (IP1)

subject to:

ygt Z 0 or 1; cg2G; t 2Tg (1)

X
t2Tg

ygt Z 1; cg2G (2)

zt Z 0 or 1; c t 2T (3)

X
t2T

zt Z 1 (4)

X
g2G

X
t2Tg

sgtlygt %M
X
t2T

dtlzt; c l2L: (5)

The first term in the objective function of Eq. (IP1) is

the operational cost for the access network, which is equal

to the total multicast routing cost. The second term in the

objective function is the fixed link installation cost for the

access network. Hence, the objective is to jointly

minimize the total operational and fixed cost for the

access network. Constraints (1) and (2) require that

multicast group g adopts exactly one tree to carry its

multicast traffic. Constraints (3) and (4) require that

exactly one spanning tree be selected and shared by all

the multicast groups. Constraint (5) requires that tree t

selected by multicast group g be a subset of the shared
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spanning tree. The above formulation is an integer

multicommodity flow problem.

After performing Lagrangean relaxation by relaxing

constraint (5) in Eq. (IP1), we obtain the following

Lagrangean relaxation problem (LR1). And al is

the associated Lagrangean multiplier.

min
X
l2L

X
g2G

X
t2Tg

rgsgtlygtal

C
X
l2L

al

X
g2G

X
t2Tg

sgtlygt KM
X
t2T

dtlzt

0
@

1
AC

X
l2L

X
t2T

bldtlzt

(LR1)

subject to:

ygt Z0 or 1; cg2G; t2Tg (6)

X
t2Tg

ygt Z1; cg2G (7)

zt Z0 or 1; ct2T (8)

X
t2T

zt Z1: (9)

Eq. (LR1) can be decomposed into the following two

independent subproblems.

Subproblem 1: for zt

min
X
l2L

X
t2T

ðbl KMalÞdtlzt (SUB1)

subject to Eqs. (8) and (9).

Subproblem 2: for ygt

min
X
l2L

X
g2G

X
t2Tg

ðal CrgalÞsgtlygt (SUB2)

subject to Eqs. (6) and (7).

(SUB1) is a directed minimum cost spanning tree

problem with arc weight (blKalM), which can be solved

by the minimum weight arborescence algorithm [3,5,8]. The

computational complexity of the above algorithm is

O(jLjjNj) [5]. However, Eq. (SUB2) is a difficult Steiner

tree problem, and is known to be NP-hard problem [6]. We

need to exhaustive enumerate all possible multicast trees to

identify the minimum cost tree for each multicast group. As

a result, we reformulate the access network design problem

to circumvent the difficulty of solving the Steiner tree

problem.
Fig. 2. Simple network topology example.
3. Revised access network design problem formulation

By examining Eq. (IP1), we observe that we need to

solve the Steiner tree problem due to the need to identify

the tree adopted by the multicast group (i.e. ygt). However, if

we could identify the links adopted by the multicast group
and enforce the following two criteria, then we could

identify the tree adopted by the multicast group implicitly

by the selected links. First, there must be a path (i.e. xgdp in

the formulation below) from the source node of the

multicast group to each group destination by using

the selected links (i.e. ygl in the formulation below). Second,

the selected links must be a subset of the links selected by

shared tree zt. The above observation leads to the following

formulation.

The notation adopted to model the revised access

network design problem is shown below.

T The set of all spanning trees

G The set of all multicast groups

L The set of all links in the graph

N The set of all nodes in the graph

dpl The indicator function which is 1 if link l is on path p

and 0 otherwise

stl The indicator function which is 1 if link l is on tree t

and 0 otherwise

rg Traffic requirement of multicast group g

al Transmission cost associated with link l

bl Fixed installation cost associated with link l

Pgd The set of paths that destination d of multicast group g

may use

hg The minimum number of hops to the farthest

destination node in multicast group g

Dg The set of destinations of multicast group g
As compared to the notations given in Section 2, hg and

Dg are added to increase the solution quality of the proposed

algorithm. Dg could be calculated in advance. For example,

if there are three destinations nodes for multicast group g.

Then the jDgj is equal to 3. On the other hand, hg could be

calculated in advance. Consider an illustrative network

topology given in Fig. 2, the multicast group source node is

1 and the destination nodes are 2 and 5. It is obvious that the

hgZ3 since the farthest destination node is 5 and it is three

hops away from the source node. We propose the Dijkstra’s

shortest path-based algorithm, denoted as Caculate_hg, to

calculate hg for each multicast group g by setting each link

arc weight to be one.
Caculate_hg
begin

initialize all link arc weight to be 1.0;

for gd1 to jGj do
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begin

initialize hg[g]d0;

for dd1 to jNj do

begin

if d2Dg then
begin

run Dijkstra’s shortest path algorithm to

determine the hop distance (hop[d]) from

source node to this destination d;

if hop[d]Ohg[g] then hg[g]dhop[d];

end;

end;

end;
end;

Pgd considers all possible paths that destination d of

multicast group g may use, and we do not need to generate

these kinds of paths in advance. In the algorithms proposed in

Section 4, the arc weight ugdl on each link l enable us to find

the shortest path by using the Dijkstra’s algorithm to identify

the path used by destination d of multicast group g.

The decision variables for the revised access network

design problem are denoted as follows.

ygl 1 if link l is on the tree adopted by multicast group g

and 0 otherwise

xgdp 1 if path p is selected for group g destined for

destination d and 0 otherwise

zt 1 if spanning tree t is selected to be shared by all the

multicast groups and 0 otherwise
The revised formulation for the access network design

problem is given below.

ZIP2 Z min
X
l2L

X
g2G

rgalygl C
X
l2L

X
t2T

blstlzt (IP2)

subject to:

ygl Z 0 or 1; cg2G; l2L (10)X
l2L

ygl Rmaxfhg; jDgjg; cg2G (11)

zt Z 0 or 1; c t 2T (12)X
t2T

zt Z 1 (13)

X
p2Pgd

xgdpdpl %ygl; cg2G; d 2Dg; l2L (14)

ygl %
X
t2T

stlzt; cg2G; l2L (15)

X
p2Pgd

xgdp Z 1; cg2G; d 2Dg (16)

xgdp Z 0 or 1; cg2G; d 2Dg; p2Pgd: (17)
The objective function of Eq. (IP2) is to minimize the

total operational and fixed cost for the access network.

Constraints (10) and (11) require that the number of links on

the multicast tree adopted by multicast group g be at least

the maximum of hg and the cardinality of Dg. Note that both

hg and the cardinality of Dg are legitimate lower bounds on

the number of links on the multicast tree adopted by

multicast group g. As an example shown in Fig. 2X
l2L

ygl Z 4

and hgZ3, jDgjZ2, max{hg,jDgj}Z3. Constraint (11) is a

redundant constraint. From the computational experiments,

the effectiveness of the proposed algorithm is enhanced

when constraint (11) is considered.

Constraints (12) and (13) require that exactly one shared

spanning tree be adopted by all multicast groups. Constraint

(14) requires that if one path is selected for group g destined

for destination d, the path must also be on the tree adopted

by multicast group g. Constraint (15) requires that the tree

adopted by any multicast group be a subset of the shared

spanning tree. Constraints (16) and (17) require that exactly

one path be selected for any group g destined for its

destination d.
4. Lagrangean relaxation

In Eq. (IP2), constraints (14) and (15) are relaxed, which

lead to the following Lagrangean relaxation problem (LR2).

u and v Lagrangean multiplier vectors are introduced for

performing Lagrangean relaxation, and ugdl and vgl

represent corresponding individual Lagrangean multiplier.

ZD2ðu; vÞ Z min
X
l2L

X
g2G

rgalygl

C
X
g2G

X
d2Dg

X
l2L

ugdl

X
p2Pgd

xgdpdpl Kygl

0
@

1
A

C
X
g2G

X
l2L

vgl ygl K
X
t2T

stlzt

 !

C
X
l2L

X
t2T

blstlzt

(LR2)

subject to:

ygl Z 0 or 1; cg2G; l2L (18)

X
l2L

ygl Rmaxfhg; jDgjg; cg2G (19)

zt Z 0 or 1; c t 2T (20)

X
t2T

zt Z 1 (21)
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X
p2Pgd

xgdp Z 1; cg2G; d 2Dg (22)

xgdp Z 0 or 1; cg2G; d 2Dg; p2Pgd: (23)

We can decompose Eq. (LR2) into the following three

independent subproblems.

Subproblem 3: for zt

min
X
l2L

X
t2T

bl K
X
g2G

vgl

 !
stlzt (SUB3)

subject to Eqs. (20) and (21).

Subproblem 4: for ygl

min
X
l2L

X
g2G

rgalygl �
X
g2G

X
d2Dg

X
l2L

ugdlygl C
X
g2G

X
l2L

vglygl

(SUB4)

subject to Eqs. (18) and (19).

Subproblem 5: for xgdp

min
X
g2G

X
d2Dg

X
l2L

X
p2Pgd

ugdlxgdpdpl (SUB5)

subject to Eqs. (22) and (23).

Again, Eq. (SUB3) can be solved by the minimum

weight arborescence algorithm [3,5,8]. The computational

complexity of the above algorithm is O(jLjjNj) [5]. Eq.

(SUB4) can be further decomposed into jGj independent

subproblems. For each multicast group g

min
X
l2L

rgal Cvgl K
X
d2Dg

ugdl

0
@

1
Aygl (SUB4-1)

subject to:

ygl Z 0 or 1; c l2L (24)

X
l2L

ygl Rmaxfhg; jDgjg: (25)

The proposed algorithm to solve Eq. (SUB4-1) is stated

as follows:

Step 1. Compute the number of negative coefficients for

all links where the coefficient for each link l is

rgal Cvgl K
X
d2Dg

ugdl:

Step 2. If the number of negative coefficients is greater

than max{hg,jDgj} for multicast group g, then let each ygl

whose corresponding coefficient is negative be 1 and 0

otherwise.

Step 3. If the number of negative coefficients, say c, is no

greater than max{hg,jDgj} for multicast group g, then first

let each ygl whose corresponding coefficient is negative be 1.

Second, assign the (max{hg,jDgj}Kc) number of ygl to be 1
whose corresponding coefficients are the smallest positive

values. Third, let the remaining ygl be 0.

The computational complexity of the above algorithm is

O(jLj(jDgjClogjLj)) for each multicast group.

Eq. (SUB5) can be further decomposed into
P

g2G jDgj

independent shortest path problems with non-negative arc

weights. They can be effectively solved by the Dijkstra’s

algorithm. The computational complexity of the Dijkstra’s

algorithm is O(jNj2) for each destination of the multicast

group.

It can be seen that the Steiner tree problem no longer exists

in this Lagrangean relaxation problem. We can efficiently

solve the Lagrangean relaxation problem optimally. By using

the weak Lagrangean duality theorem (for any given set of

non-negative multipliers, the optimal objective function

value of the corresponding Lagrangean relaxation problem is

a lower bound on the optimal objective function value of the

primal problem [1]), ZD2(u,v) is a lower bound on ZIP2. We

construct the following dual problem to calculate the tightest

lower bound and solve the dual problem by using the

subgradient method [1]

ZD Z max ZD2ðu; vÞ (D)

subject to: u,vR0.

Let the vector S be a subgradient of ZD2(u,v) at (u,v). In

iteration k of the subgradient optimization procedure, the

multiplier vector mkZ(uk,vk) is updated by mkC1ZmkC
akSk where

Skðu; vÞ Z
X

p2Pgd

xgdpdpl Kygl; ygl K
X
t2T

stlzt

0
@

1
A:

The step size ak is determined by

d
Zk

IP2 KZD2ðm
kÞ

jjSkjj2
;

where Zk
IP2 is the best primal objective function value

found by iteration k(an upper bound on the optimal primal

objective function value), and d is a constant (0%d%2).
5. Getting primal feasible solutions

To calculate primal feasible solutions to the access

network design problem, solutions to the Lagrangean

relaxation problem (LR2) are considered. Three primal

heuristics are hence developed. The first and the second

primal heuristics are to begin with xgdp and ygl, respectively,

by using an add-and-drop heuristic to construct a shared

spanning tree for all the multicast groups. These two primal

heuristics typically require a significant number of link

adding and dropping operations since the links selected by

these heuristics may not even be a tree.

The third heuristic is to directly apply zt after solving

Eq. (LR2), which seems to be the simplest among the three.
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After the shared spanning tree is selected, xgdp and ygl can be

determined. In the computational experiments, this heuristic

is shown to be particularly effective and superior to the other

two. The computational complexity for the third heuristic is

O jLj
P

g2G jDgj
	 


:

In the following, we show the complete algorithm

(denoted as LGR) to solve problem (IP2).

Algorithm LGR
Table 1

Computational results for experiment 1

Network

topology

No. of

multicast

groups

Lower

bound (Lb)

Upper

bound (Ub)

(UbKLb)/

Lb!100%

ARPA 11 96,809 96,809 0.0

12 95,972 95,972 0.0

13 98,629 98,629 0.0

14 102,476 102,476 0.0

15 106,024 106,024 0.0

16 103,964 103,964 0.0

17 110,575 110,575 0.0

18 107,980 107,980 0.0

19 113,835 113,836 0.0a
begin

read user input file (network topology; link configur-

ations; multicast group configurations, traffic

requirements);

calculate jDgj for each multicast group g;

run Calculate_hg;

initialize the Lagrangean multiplier vector (u and v) to

be all zero vector;

UBdvery large number; LBd0;

quiescence_aged0;

step_size_coefficientd2;

for iterationd1 to Max_Iteration_Number do

begin

run sub-problem (SUB3);

run sub-problem (SUB4);

run sub-problem (SUB5);

calculate ZD;

if ZDOLB then LBdZD and quiescence_aged0;

else quiescence_agedquiescence_ageC1;

if quiescence_ageZQuiesceince_Threshold then

quiescence_aged0 and ddd/2;

run Primal_Heuristic_Algorithm;

if ub!UB then UBdub; /*ub is the newly

computed upper bound */

run update-step-size;

run update-multiplier;

end;
20 112,434 112,434 0.0
GTE 11 40,114 40,114 0.0

12 43,497 43,497 0.0

13 43,497 43,497 0.0

14 43,497 43,497 0.0
end;

And the computational complexity for LGR is

OðjLjjNjC jLjjGjlogjLjC ðjNj2C jLjÞ
X
g2G

jDgjÞ for each

iteration.

15 43,497 43,497 0.0

16 43,497 43,497 0.0

17 43,497 43,497 0.0

18 43,497 43,497 0.0

19 43,497 43,497 0.0

20 43,497 43,497 0.0

OCT 11 144,360 144,362 0.0

12 137,556 137,610 0.0

13 135,222 135,370 0.1

14 129,380 129,380 0.0

15 133,767 133,767 0.0

16 142,395 142,395 0.0

17 151,322 151,322 0.0

18 161,297 161,304 0.0

19 164,900 164,911 0.0

20 173,337 173,343 0.0

a The exact error gap is 0.001%. But for simplicity of expression, only

one decimal place is reported.
6. Computational experiments

The proposed algorithm for the access network design

problem developed in Sections 4 and 5 is coded in C and

run on a PC with INTELTM PIII-500 CPU. We tested

the algorithm for three networks—ARPA, GTE and OCT

with 21, 12 and 26 nodes, respectively. The network

topologies can be found in Ref. [9].

Max_Iteration_Number and Quiesceince_Threshold are

set to 1500 and 30, respectively. The step size coefficient d

is initialized to be 2 and will be halved when the objective

function value of the dual problem does not improve for

iterations up to Quiesceince_Threshold.
Three sets of computational experiments are performed.

In the first set of experiments, it is assumed that the traffic

demand of each multicast group is one packet per second.

In addition, the destinations of distinct multicast groups are

mutually exclusive. In the second set of experiments, traffic

demand of each multicast group is randomly selected from

an interval ranging from 0 to 20. The destinations of

distinct multicast groups are generated in the same way as

in the first set of computational experiments. In the third

set of experiments, traffic is randomly generated for each

multicast group, and the destinations of each multicast

group are also randomly generated. As a result, the

destinations of distinct multicast groups may not be

mutually exclusive.

Both the link cost and the unit routing cost are uniformly

distributed between 1 and 2000 in these three sets of

computational experiments. Ten different numbers of

multicast groups, ranging from 11 to 20, are tested in

these three sets of experiments.

Table 1 shows the results of the first set of computational

experiment. As can be seen from Table 1, the error gaps

([(upper boundKlower bound)/lower bound]!100%)

between the lower bound and the upper bound are within



Table 2

Computational results for experiment 2

Network

topology

No. of

multicast

groups

Lower

bound (Lb)

Upper

bound (Ub)

(UbKLb)/

Lb!100%

ARPA 11 897,525 897,766 0.0

12 931,764 932,224 0.0

13 908,229 908,395 0.0

14 995,773 995,878 0.0

15 946,534 946,651 0.0

16 906,811 907,209 0.0

17 824,612 833,030 1.0

18 849,876 859,086 1.1

19 826,705 835,378 1.1

20 845,210 855,018 1.2

GTE 11 403,212 403,212 0.0

12 460,723 460,723 0.0

13 460,723 460,723 0.0

14 460,723 460,723 0.0

15 460,723 460,723 0.0

16 460,723 460,723 0.0

17 460,723 460,723 0.0

18 460,723 460,723 0.0

19 460,723 460,723 0.0

20 460,723 460,723 0.0

OCT 11 1,346,297 1,346,319 0.0

12 1,458,753 1,460,947 0.2

13 1,460,953 1,464,893 0.3

14 1,372,628 1,372,628 0.0

15 1,421,285 1,421,285 0.0

16 1,438,466 1,438,471 0.0

17 1,493,311 1,493,312 0.0

18 1,517,921 1,519,941 0.1

19 1,496,299 1,496,357 0.0

20 1,529,243 1,529,274 0.0

Table 3

Computational Results for Experiment 3

Network

topology

No. of

multicast

groups

Lower

bound (Lb)

Upper

bound (Ub)

(UbKLb)/

Lb!100%

ARPA 11 1,687,053 1,705,161 1.1

12 2,011,822 2,031,961 1.0

13 2,269,020 2,302,089 1.5

14 2,051,741 2,072,944 1.0

15 1,728,275 1,760,091 1.8

16 2,110,499 2,125,279 0.7

17 1,480,630 1,490,257 0.7

18 2,341,788 2,365,094 1.0

19 2,693,683 2,715,428 0.8

20 2,386,016 2,420,162 1.4

GTE 11 1,018,769 1,018,821 0.0

12 582,284 589,782 1.3

13 888,953 888,953 0.0

14 1,110,137 1,110,137 0.0

15 1,171,455 1,176,496 0.4

16 1,189,363 1,199,090 0.8

17 1,260,059 1,264,811 0.4

18 1,469,297 1,473,999 0.3

19 1,262,947 1,272,030 0.7

20 1,196,573 1,212,394 1.3

OCT 11 2,225,798 2,229,021 0.1

12 2,977,833 2,994,648 0.6

13 2,650,468 2,693,397 1.6

14 3,201,981 3,218,372 0.5

15 3,113,354 3,141,470 0.9

16 3,158,896 3,195,048 1.1

17 3,133,284 3,214,536 2.6

18 2,811,159 2,883,546 2.6

19 3,375,415 3,400,754 0.8

20 3,060,634 3,157,325 3.2
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0.2% for all test cases. In other words, the proposed

algorithm can almost optimally solve all the test problems.

Table 2 summarizes the computational results for the

second set of experiments. As can be seen from Table 2,

the error gaps are all within 1.2%. And Table 3 summarizes

the computational results for the third set of experiments.

From Table 3, the error gaps are all within 3.2% for all

network topologies and traffic demand configurations. One

result that is not shown in the tables is that every such near-

optimal solution is calculated in one minute of CPU time.

In order to show the performance comparison between

the developed solution approaches based on the formulation

in Sections 2 and 3. We also design a computational

experiment for comparison. The results are summarized in

Table 4. Six randomly generated network topologies

ranging from 3 to 8 nodes are tested for comparison. Note

that ARPA, GTE, OCT network topologies are not tested for

the solution approach based on Section 2 due to unreason-

able long execution time. In these network topologies, the

developed solution approaches based on Sections 2 and 3 all

locate the optimal solutions. However, from the execution

time, the developed solution approach based on Section 2

could not be scaled to large network. On the other hand,

the solution approaches based on the formulation in
Section 3 possess good scalability due to their polynomial

time complexity.
7. Discussion on the transmission cost function

In Section 3, we assumed that the transmission cost

associated with link (al) is constant, i.e. a linear cost

function with aggregate flow assumption is made. In this

section, we will investigate more general transmission cost

function, especially concave cost function, for the access

network design problem.

One more decision variable (fl) is defined.

fl Aggregate flow associated with link l

jl(fl) Transmission cost function on link l with

respect to aggregate flow fl
The mathematical formulation for the access network

design problem considering concave transmission cost

function is given below.

ZIP3 Z min
X
l2L

jlðflÞC
X
l2L

X
t2T

blstlzt (IP3)



Table 4

Computational results for Sections 2 and 3

Network topology jNjZ3, jLjZ6 jNjZ4, jLjZ12 jNjZ5, jLjZ20 jNjZ6, jLjZ22 jNjZ7, jLjZ24 jNjZ8, jLjZ26

Section 2 (s) 0.1 3.1 763 3055 12,220 48,670

Section 3 (s) 0.1 0.2 0.5 0.65 0.8 2.3

Section 2 (Ub) 23,927 68,785 100,758 134,586 89,295 167,844

Section 3 (Ub) 23,927 68,785 100,758 134,586 89,295 167,844

Fig. 3. Concave cost function example.
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subject to:

ygl Z 0 or 1; cg2G; l2L (26)

X
l2L

ygl Rmaxfhg; jDgjg; cg2G (27)

zt Z 0 or 1; c t 2T (28)

X
t2T

zt Z 1 (29)

X
p2Pgd

xgdpdpl %ygl; cg2G; d 2Dg; l2L (30)

ygl %
X
t2T

stlzt; cg2G; l2L (31)

X
p2Pgd

xgdp Z 1; cg2G; d 2Dg (32)

xgdp Z 0 or 1; cg2G; d 2Dg; p2Pgd (33)

X
g2G

rgygl % fl; c l2L (34)

flR0; c l2L: (35)

In Eq. (IP3), constraints (30), (31) and (34) are

relaxed, which lead to the following Lagrangean relax-

ation problem (LR3). u, v and w Lagrangean multiplier

vectors are introduced while performing Lagrangean

relaxation

ZD3ðu; v;wÞ Zmin
X
l2L

jlðflÞ

C
X
g2G

X
d2Dg

X
l2L

ugdl

X
p2Pgd

xgdpdpl Kygl

0
@

1
A

C
X
g2G

X
l2L

vgl ygl K
X
t2T

stlzt

 !

C
X
l2L

wl

X
g2G

rgygl K fl

 !
C
X
l2L

X
t2T

blstlzt

(LR3)

subject to:
ygl Z 0 or 1; cg2G; l2L (36)

X
l2L

ygl Rmaxfhg; jDgjg; cg2G (37)

zt Z 0 or 1; c t 2T (38)

X
t2T

zt Z 1 (39)

X
p2Pgd

xgdp Z 1; cg2G; d 2Dg (40)

xgdp Z 0 or 1; cg2G; d 2Dg; p2Pgd (41)

0% fl%
X
g2G

rg; c l2L: (42)

We can decompose Eq. (LR3) into the following four

independent subproblems. The first three subproblems are

almost identical to the three subproblems in Eqs.

(SUB3)–(SUB5), except in Eq. (SUB4), al is replaced

with wl. The solution approaches to solve these three

subproblems are the same as in Section 4. As for the

subproblem for fl,

Subproblem 6: for fl

min
X
l2L

jlðflÞKwlfl (SUB6)

subject to Eq. (42).

Eq. (SUB6) can be further decomposed into jLj

independent subproblems. For each link l



Table 5

Computational results for concave cost function

Network

topology

Threshold Lower

bound (Lb)

Upper

bound (Ub)

(Ub–Lb)/

Lb!100%

OCT 0.1 169,073 171,523 1.4

0.2 169,073 171,715 1.6

0.3 169,073 171,899 1.7

0.4 169,073 172,070 1.8

0.5 169,073 172,221 1.9

0.6 169,073 172,351 1.9

0.7 169,073 172,451 2.0

0.8 169,073 172,513 2.0

0.9 169,073 172,529 2.0
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minjlðflÞKwlfl (SUB6-1)

subject to

0% fl%
X
g2G

rg:

Since jl(fl) is a concave cost function with respect to fl,

then the global minimum of Eq. (SUB6-1) will only occur in

two boundary points of fl/0 and
P

g2G rg: In Fig. 3, we

illustrate an example to show the objective value of Eq.

(SUB6-1) when jl(fl) is a concave cost function. We could

solve Eq. (SUB6-1) by comparing these two boundary points.

The getting primal feasible heuristic algorithm is to start

with zt, which is the same as in Section 5. We conduct

computational experiments to show the impact of the

concave cost function on the solution quality. jl(fl) is

defined as follow to be a concave cost function with respect

to fl
(1)
(2)
jlðflÞZ fl; if fl % threshold!
X
g2G

rg
jlðflÞZjlðfl K1ÞC1K

fl Kthreshold!
X
g2G

rg

X
g2G

rg

 !
!ð1KthresholdÞ

;

otherwise.

In the above definition, parameter threshold is with

the range 0%threshold%1. Before fl reaches threshold!P
g2G rg;jl(fl) is a linear function and after that it is a concave

function. Traffic is randomly generated for each multicast

group, and the destinations of each multicast group are also

randomly generated. The number of multicast groups is 20.

In Table 5, we summarize the computational results for

OCT network. In the second column of Table 5 is the

parameter threshold. As could be seen from Table 5, when

the concavity characteristic of jl(fl) is strong, we could get

even better solution quality (e.g. error gapZ1.4% when

thresholdZ0.1).
8. Summary and conclusion

The access network design problem is crucial when

deploying a large-scale network. The cost-effect of the

economies-of-scale and the rapid growth of more reliable and

high bandwidth transmission technology have favored tree-

based topologies for access networks. In this paper, we consider

the access network design problem where a tree topology shall

be selected. We formulate this problem as a combinatorial

optimization problem where the installation and routing cost

are jointly minimized. In order to circumvent the difficulty

incurred by the inherent Steiner-tree property, a reformulation

of the problem is proposed. We take an optimization-based

approach by applying the Lagrangean relaxation technique in

the algorithm development. From the computational exper-

iments, the proposed algorithm is shown to be efficient and

effective. More precisely, the proposed algorithm calculated

near-optimal solutions, which are within 3.2% of an optimal

solution for linear routing cost function and within 2% of an

optimal solution for concave routing cost function in one

minute of CPU time for networks of up to 26 nodes.
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