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A Near-Optimal Sensor Placement Algorithm to
Achieve Complete Coverage/Discrimination in

Sensor Networks
Frank Y. S. Lin and P. L. Chiu, Student Member, IEEE

Abstract— In this letter, we develop a robust and scalable
algorithm to cope with the sensor placement problem for target
location under constraints of the cost limitation and the complete
coverage. The problem is NP-complete for arbitrary sensor fields.
The grid-based placement scenario is adopted and the sensor
placement problem formulated as a combinatorial optimization
problem for minimizing the maximum distance error in a sensor
field under the constraints. The proposed algorithm is based
on the simulated annealing approach. The experimental results
reveal that, for small sensor fields, the algorithm can find the
optimal sensor placement under the minimum cost limitation.
Moreover, it can also find a placement with minimum distance
error for large sensor fields under the cost limitation.

Index Terms— Sensor placement, target location, mathematical
programming, optimization, simulated annealing.

I. INTRODUCTION

IN distributed sensor networks (DSNs), the sensor place-
ment due to cost limitation is currently one of the most

important research issues. A sensor network can be deployed
in two ways - with random placement or with grid-based
placement. When the environment is unknown, random place-
ment is the only choice and sensors may be thrown to any
place by aircrafts randomly. The alternative is to deploy
sensors on a sensor field to guarantee a particular quality of
service, if the properties of the terrain are predetermined. The
field is generally divided into grids and sensors are carefully
deployed at the grid points. This approach is called grid-based
placement. This letter focuses on this method.

Sensor placement strategy depends on the DSN’s applica-
tion. If it is to be used for surveillance, the placing of sensors
depends on the coverage. Discrimination must be considered
when they are used to solve target location problems.

References [1] and [2] present a resource-bounded opti-
mization framework for sensor resource management under
the constraints of sufficient grid coverage of the sensor field.
Reference [3] formulates the sensor placement problem in
terms of cost minimization under coverage constraints. A
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Fig. 1. A complete covered and discriminated sensor field.

framework for identifying codes is applied to determine sensor
placement for a unique target location. However, this approach
cannot be applied to irregular sensor fields. According to our
survey, the sensor placement for target location has not been
solved by mathematic optimization methodology.

II. PROBLEM DESCRIPTION

A grid-based sensor field can be represented as a collection
of two- or three-dimensional grid points [1]. A set of sensors
can be deployed on the grid points to monitor the sensor field.
In this letter, we consider the detection model of a sensor to
be a 0/1 coverage model. The coverage is assumed to be full
(1) if the distance between the grid point and the sensor is
less than the detection radius of the sensor. Otherwise, the
coverage is assumed to be ineffective (0). If any grid point in
a sensor field can be detected by at least one sensor, we call
the field is completely covered, as shown in Fig. 1. In this
context, a target can be detected at any place in the field.

A power vector is defined for each grid point to indicate
whether sensors can cover a grid point in a field. As shown
in Fig. 1, the power vector of grid point 8 is (0, 0, 1, 1, 0, 0)
corresponding to sensor 4, 6, 7, 9, 10, and 12. In a completely
covered sensor field, when each grid point is identified by a
unique power vector, the sensor field is said to be completely
discriminated, as shown in Fig. 1. In this case, as soon as a
target occurs in a grid of the sensor field, it can be located by
the back-end according to the power vector of the grid.

Sometimes, due to some resource limitations, a completely
discriminated sensor field cannot be constructed. Conse-
quently, these may lead to wrong determinations, whenever
a target occurs at any one of the indistinguishable grid points.
Positioning accuracy, therefore, becomes a major considera-
tion in solving the problem. Distance error is one of the most
natural criteria to measure positioning accuracy. The distance
error of two indistinguishable grid points is defined as the
Euclidean distance between them. In this letter, we intend to
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minimize the distance error when complete discrimination is
not possible.

III. MATHEMATICAL MODEL

The sensor placement problem is formulated herein as
a combinatorial optimization problem. The formulation can
plan a sensor network that provides either complete or high,
discrimination, depending on the cost limitation. Complete
discrimination requires that the minimum Hamming distance
of the power vectors associated with any pair of grid points be
at least one. High discrimination requires that the maximum
distance error be minimized. The problem is, therefore, defined
as a min-max model.
Given Parameters:

A = {1, 2, ...,m} : Index set of the sensors’ candidate lo-
cations.

B = {1, 2, ..., n} : Index set of the locations in the sensor
field, m ≤ n.

rk : Detection radius of the sensor located
at k, k ∈ A.

dij : Euclidean distance between location i
and j, i, j ∈ B.

ck : The cost of the sensor allocated at
location k, k ∈ A.

G : Total cost limitation.

Decision Variables:
yk : 1, if a sensor is allocated at location

k and 0 otherwise, k ∈ A.
vi = (vi1, vi2, ..., vik) : The power vector of location i,

where vik is 1 if the target at loca-
tion i can be detected by the sen-
sor at location k and 0 otherwise,
where i ∈ B, k ∈ A.

Objective Function:

ZIP1 = min
v

max
(i,j)

dij

1 + K
∑m

k=1(vik − vjk)2
(IP1)

Subject to :
vikdik ≤ ykrk ,∀k ∈ A, i ∈ B, i �= k (1)

dik

rk
> yk − vik ,∀k ∈ A, i ∈ B, i �= k (2)

vik = yk ,∀k ∈ A, i ∈ B, i = k (3)
m∑

k=1

ckyk ≤ G (4)

m∑

k=1

vik ≥ 1 ,∀i ∈ B (5)

vik, yk =0 or 1 ,∀k ∈ A, i ∈ B. (6)

(K is an arbitrarily large number.)
When

∑
(vik − vjk)2 = 0, objective function (IP1) intro-

duces a penalty dij , dij ≥ 1. As K → ∞ and
∑

(vik−vjk)2 >
0, ZIP1 introduces a penalty dij/(1 + K), which approaches
zero.

Constraints (1), (2), and (3) require the relationship between
sensor detection radius rk and detection distance dik. If a
target appears at grid point i and the grid is inside the coverage
of sensor k, the sensor can detect the target if sensor k is

1. Deploy sensors on all grid points; Emin ← ∞.

2. Repeat Steps (3)∼(18) until t ≤ tf .

3. Repeat Steps (4)∼(17) r times.

4. Generate a random number p, 0 < p < 1.

5. Configure a new deployment by removing a sensor randomly.

6. If Constraint (4) is still satisfied then

7. evaluate the energy differential ∆E between the two deployments.

8. If exp(−∆E/t) > p then go to Step (13).

9. Configure a new deployment by changing a sensor to a new grid

point randomly.

10. If constraint (4) is violated then go to Step (3).

11. Evaluate the energy differential ∆E between the two deployments.

12. If exp(−∆E/t) ≤ p then go to Step (3).

13. Accept the new deployment.

14. If Constraint (3) is violated then go to Step (3).

15. If Emin < the current energy then go to Step (3).

16. Emin ← the current energy and save the current sensor

deployment.

17. If Emin is the desired solution then go to Step (19).

18. t ← t × α, r ← r × β.

19. ZIP1 ← Emin.

Algorithm 1: Simulated Annealing pseudo code for sensor placement.

available. Constraint (4) requires that the total deployment cost
of sensors be limited by cost G. Constraint (5) is the complete
coverage limitation. Constraint (6) is an integer constraint.

IV. ALGORITHM

Simulated annealing (SA) is a highly reliable method for
solving hard combinatorial optimization problems. The con-
cept of SA is applied to derive an efficient method for solving
the problem approximately.

Here, the cooling schedule of the algorithm is stated briefly.
Initially, we assume the sensors are deployed at all grid points.
In each loop, an attempt is made to remove one sensor
if the cost constraint is not met. Otherwise, an attempt is
made to move a sensor to another randomly chosen position.
Moreover, the stopping criterion is modified to improve effi-
ciency. Besides frozen temperature, tf , is reached, when both
complete coverage and discrimination are achieved, such that
ZIP1 = 1/(1 + K), the procedure will then be stopped. The
solution with complete coverage and discrimination may not
be optimal. However, the solution is the desired solution to
this problem.

Algorithm 1 shows a pseudo code of the algorithm. The
energy, E, is defined as follows:

E = max
(i,j)

dij

1 + K
∑m

k=1(vik − vjk)2
.

V. COMPUTATIONAL RESULTS

This section presents the computational results. First, the
performance of the proposed algorithm is evaluated when
small sensor fields are deployed. The purpose of the ex-
periment is to examine whether the algorithm can find the
optimal solution under a minimum cost constraint. Then, the
performance results in the case of larger sensor fields are
presented under various cost constraints.
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TABLE I

COMPARISON BETWEEN EXHAUSTIVE SEARCH AND THE SA ALGORITHM.

# of sensors Sensor # of sensors Sensor

Area Opt. SA density Area Opt. SA density

3 × 4 4 4 44.44% 6 × 4 10 10 41.67%

4 × 3 6 6 50% 6 × 5 12 12 40%

4 × 4 7 7 43.75% 7 × 3 9 9 42.86%

5 × 3 6 6 40% 7 × 4 12 12 42.86%

5 × 4 8 8 40% 8 × 3 10 10 41.67%

5 × 5 10 10 40% 9 × 3 11 11 40.74%

6 × 3 8 8 44.44% 10 × 3 12 12 40%

Note: Opt. is found by exhaustive search.

The parameters of the cooling schedule are α = 0.75
and β = 1.3. The initial values of r and t are 5n and 0.1,
respectively; and n is the amount of grids in the sensor field.
The frozen temperature, tf , is set to t0/30. K is 10000 and
the cost of sensor, ci, ∀1 ≤ i ≤ n, is set to one.

As all sensors have the same deployment cost, the cost
constraint, Constraint (4), can be expressed as a limit on the
number of sensors. This section uses a normalized term, sensor
density, in the constraint. Sensor density is defined as follows:

Sensor density (%) = (
m∑

k=1

yk

n
) × 100%.

A. Experiment I

Experiment I evaluates the performance of the proposed
algorithm for smaller rectangular sensor fields that have no
more than 30 grid points. The results are compared with those
obtained in an exhaustive search.

First, we find a minimum sensor density for a complete
covered and discriminated sensor field. Then, an attempt
is made to obtain the same result by using the proposed
algorithm under a sensor density constraint.

Table 1 shows the results. In all cases, the proposed algo-
rithm achieves the same deployment of sensor fields with a
minimum sensor density. The required sensor density ranges
between 40% and 45%, except when the rectangular sensor
field is 4×3. The exhaustive search for the 10×3 sensor field
exceeds 65 minutes. However, the proposed algorithm finds
the solution in 0.1 second.

B. Experiment II

In this experiment, two larger sensor fields, with 10×10 and
30 × 30 grid points, are considered. The radius of the sensor
is one. The values of ZIP1 are determined for various sensor
densities. The results obtained using the proposed algorithm
is compared with the best solution obtained by the random
placement approach. The best solution that has a minimum
objective value is found in 1000 arbitrarily generated solutions.

The time to compute 1000 arbitrary solutions for the 30×30
sensor field with 70% sensor density is 700 seconds. That for
the proposed algorithm is only a couple of minutes. Figs. 2 and
3 show that the required density for the desired solution ob-
tained using the proposed algorithm ranges from 40% to 45%.

Fig. 2. Results for Exp. II (10 by 10 grid points).

Fig. 3. Results for Exp. II (30 by 30 grid points).

This result is consistent with Table 1. In contrast, the random
placement approach is associated with a relatively high density
(54% and 69% for Figs. 2 and 3, respectively). The proposed
algorithm is, therefore, very effective and scalable.

Figs. 2 and 3 indicate that the placement of sensors by
the proposed algorithm has a minimum distance error of one,
when the sensor density is insufficient. The random placement
approach cannot achieve the same result.

The proposed algorithm can achieve completely covered
placement at a very low sensor density. The minimum required
sensor densities in Figs. 2 and 3 are only 25% and 24%,
respectively. The results are very close to the theoretical lower
bound. (When the sensor radius is 1+, a sensor can cover
5 grid points. Hence, the lower bound of the sensor density
for complete coverage is 20%). However, with the random
placement approach, the required density for completely cov-
ered placement is very high (44% and 63% for Figs. 2 and 3,
respectively). The results show that the probability of finding
the feasible solution using the random placement approach is
very low when the area of the sensor field increases.

VI. CONCLUSIONS

This letter considers the sensor placement problem for
locating targets under cost constraints. We first formulate
this problem as a min-max mathematical optimization model
where the accuracy of discrimination is the objective. Then,
the simulated annealing-based algorithm is developed to solve
the optimization problem. The experimental results show that
the proposed algorithm can efficiently obtain a high-quality
solution. Additionally, the proposed algorithm is very effec-
tive, scalable, and robust.
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