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Abstract. This paper proposes an admission control algorithm for CDMA net-
works, from which a revenue optimization problem is formulated as a mixed in-
teger problem. The objective of the optimization problem is to maximize total 
system revenue subject to system capacity as well as QoS constraints. The ap-
proach for solving revenue optimization problem is Lagrangean relaxation in 
conjunction with a heuristic.  The experiments consider total system revenue 
with respect to voice activity factor (VAF) and signal-to-interference (SIR) on 
500 test cases which are within 9 base stations, 50 existing mobile stations, as 
well as 50 new mobile stations. Computational results illustrate that the error 
gap less than 5.0% is with percentile 0.99. Proposed algorithm is calculated 
with near-optimal solution. 

1   Introduction 

CDMA (code division multiple access) – based broadband wireless communication 
networks provide a sound environment for forthcoming applications of mobile com-
merce. A key attribute of CDMA is that it can operate in single cell/sector clusters; 
each cell/sector uses the same carrier frequencies, i.e., reuse of unity  [1][2]. Gener-
ally, compared with FDMA and TDMA, CDMA provides no upper limit of available 
channels. As all users share the entire frequency spectrum, instead of divided fre-
quency or time, the system’s capacity is bounded by interference, which may com-
prise inter-cellular and intra-cellular interference, and background noise.  

In CDMA systems, because of spectrum sharing, channel assignment by allocating 
transmission power results in interference on other mobile stations. Inter-cellular 
interference comes from mobile stations/users (the two terms are mutually substituted 
hereafter) served by neighboring cells, while mobile stations in the coverage of their 
homing cells generate intra-cellular interference. This kind of situation requires that 
the interferences base station incurred must be lower than pre-defined acceptable 
interference threshold to ensure communication quality of service (QoS) [3]. The 
capacity limit depends on the interference incurred in each cell.  The less interference 
is incurred at base stations, the more capacity is provided in the system. A lot of re-
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searches have been proposed to enlarge the CDMA capacity, for example, “multi-user 
detection” and ”smart antenna” are the usual technologies. Multi-user detection is 
capable of interference cancellation to mitigate the interference from the intra-cellular 
mobile stations [4]. To cope with the inter-cellular interference, advanced technique 
is smart antenna, for which sectorization is introduced [5]. 

To effectively manage system capacity, call admission control (CAC) is another 
prevalent mechanism to allocate channel resources. CAC, also called connection 
admission control, is used in networks to administer QoS. The mechanism regulates 
the network operation with an optimal condition in such a way to promise the uninter-
rupted services for existing users, and meantime to accommodate as more new users’ 
requests as possible [6]. In the reverse-link, received SIR at the base station affects 
the connection quality. Thus, to preserve the whole system QoS, a number of inter-
ferences sources, including existing connections and other interferences propagated 
from cells, must be taken into account. In CDMA systems, multi-access interference 
is a function of the number of users and is a limiting factor in ensuring QoS. The 
CAC mechanism relies on the “soft capacity” of the CDMA networks, as determined 
by the level of multi-access interference, and is often characterized by the signal-to-
interference ratio (SIR). Generally speaking, the usual measures of CAC are call 
blocking and call dropping. Blocking means a new user is denied access to the system, 
while dropping means an existing user call is forcibly terminated in the handoff proc-
ess.  

In this paper, we focus on admission control to preserve whole system QoS, 
meanwhile, to accommodate as more users as possible. The more users are admitted, 
the more revenue is earned. Previous works pay more attention to analysis of QoS in 
terms of different issues as follows: (1) consideration of how traffic types affect per-
formance on delay [7] and system capacity [8]; (2) power control mechanism to en-
hance capacity [9][10] and reduce call blocking/forced termination [11]. With the 
best of our knowledge, little research discusses revenue optimization in terms of ad-
mission control. This paper not only proposes an admission control algorithm, but 
also intends to model a revenue optimization problem. A mathematical model of the 
problem is constructed, and the solution quality of proposed algorithm and revenue 
contribution are analyzed. We apply Lagrangean relaxation as solution approach that 
combined with subgradient- based method [12].  

The remainder of this paper is organized as follows. In Section 2, a mathematical 
formulation of revenue optimization problem is proposed. Section 3 applies La-
grangean relaxation as a solution approach to the problem. For effectively solving the 
problem, we develop an admission control algorithm to accommodate as more users 
as possible. In Section 4, illustrates the computational experiments. Finally, Section 5 
concludes this paper. 
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2   Problem Formulation 

2.1   Problem Description  

To evaluate the system revenue, the problem that is modeled as an optimization 
problem is to grant call requests or not. CAC prevents the system from being over-
loaded, and to provide uninterrupted services for existing users as well. This assumes 
the following conditions: (1) perfect power control; (2) the uplink is perfectly sepa-
rated from the downlink; (3) fading is not considered; and (4) forward link is not 
considered. For the purpose of long-term revenue analysis, some complicated scenar-
ios like re-homing, outbound, and handover calls are not dealt with. Also, the prob-
lem would not take account of mobility of both new and existing mobile stations. In 
other words, the new mobile stations in the model can either be homed to the control-
ling base station or blocked. For simplicity of modeling and further experiments, we 
just focus on the new mobile stations in the problem to contribute total system reve-
nue. Notations used to modeling the problem are listed in Table 1. 

2.2   Mathematical Formulation 

The revenue analysis is formulated as a combinatorial optimization problem that the 
objective function is to maximize the total revenue by admitting new users into the 
system, and a number of constraints must be satisfied. The following revenue maxi-
mization problem (IP) is also a revenue loss minimization problem, where at is the 
average revenue each new user contribute. Usually, a maximization problem is 
equivalent to minimization one by multiplying a minus sign in the equation.  
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Table 1. Description of notations 

Notation Description 

B the set of candidate locations for base stations 

S the power that a base station received from a mobile station that is homed to the base 
station with perfect power control 

T the set of mobile stations 
Eb the energy that BS received 

Ntotal total noise 
α voice activity factor (VAF) 
Mj upper bound on the number of users that can active at the same time in base station j 
τ attenuation factor 

Djt distance between base station j and mobile station t 
Djj’ distance between base station j and j’ 
N0 the background noise 

µjt indicator function which is 1 if mobile station t can be served by base station j and 0 oth-
erwise 

G the processing gain 

at the revenue from admitting mobile station Tt ∈  into the system 

T’ the set of existing mobile stations 

T” the set of new mobile stations whose admittance into the cell is to be determined 

b’ the artificial base station to carry the rejected call when admission control function decides 
to reject the call 

B’ the set of  B ∪{b’} 

bt the controlling base station of mobile station t 

Rj upper bound of power transmission radius of base station j  

rj transmission radius of base station j 

δjt indicator function which is 1 if mobile station t is homed to base station j and 0 otherwise 

zjt decision variable which is 1 if mobile station t is served by base station j and 0 otherwise 

 
 

  
 
The meanings of associated constraints are described as follows. Constraint (1) re-

quires that every one mobile station is served with its homing base station in the re-
quired QoS. The left hand side of (1) is the threshold of acceptable SIR for each con-
nection. The right hand side means the real SIR. The denominator of the right hand 
side is the total interference that includes white noise, the intra-cell interference, and 
inter-cell interference. For simplicity, we do not consider the multi-user detection in 
this model. Constraint (2) ensures that the number of users who are active at the same 
time in a base station would not exceed the upper bound of capacity Mj. Constraint 
(3) ensures that each mobile station can be homed to only one physical base station or 
rejected. Constraints (4) and (5) guarantee the integer property of decision variables 
and indicator functions. 
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3   Solution Approach 

3.1   Lagrangean Relaxation 

Lagrangean relaxation (LR) is a general solution approach for solving mathemati-
cal optimization problems, and is used to decompose such problems to exploit their 
special structure. LR has a number of significant advantages [12]. The entire proce-
dure of the LR method is as follows: relax complicating constraints, multiply the 
relaxed constraints by the corresponding Lagrangean multipliers, and then add them 
to the primal objective function. Accordingly, the primal optimization problem can be 
transformed into an LR problem that can be decomposed into several independent 
sub-problems. Furthermore, each sub-problem can be optimally solved by proposed 
algorithm. To obtain optimal solutions, we must iteratively adjust Lagrangean multi-
pliers to optimally solve the Lagrangean dual problem.  
 

In this paper, we transform the primal optimization problem (IP) into the follow-
ing Lagrangean relaxation problem (LR) where Constraints (1) (2) are relaxed.  
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In this paper, two kinds of users that include existing and new mobile stations are 

taken care. We apply indication function jtδ  and decision variable jtz  to track exist-

ing and new mobile stations, respectively. From which, jtδ  just indicates the homing 
status of existing mobile stations because of existing ones would not be blocked at all. 
Irrelevant to the decision variable, the second term and the third term of (SUB) are 
constant values which can be pre-calculated. Thus, the first term of (SUB) is what we 
intend to treat it. Define jtp  as following equation, 
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Then the first term of (SUB) can be decomposed into |T”| sub-problems that de-

cide new mobile stations to be admitted or not in terms of revenue optimality. If jtp  
is less than 0, we assign jtz  to 1, and 0 otherwise. According to the weak Lagrangean 

duality theorem, for any 1 2( , ) 0j jv v ≥ , the objective value of 1 2( , )D j jZ v v  is a lower bound 
of ZIP. Based on Problem (LR), the following dual problem (D) is constructed to 
calculate the tightest lower bound. 

  
 1 2max ( , )D D j jZ Z v v=   (D) 
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Subgradient method is then applied to solve the dual problem. Let the vector S is a 

subgradient of 1 2( , )D j jZ v v  at 1 2( , )j jv v . In iteration k of subgradient optimization proce-
dure, the multiplier vector π  is updated by 1k k k kt Sπ π+ = + , in which kt  is a step size 
determined by ( ) 2* ( )k k k

IP Dt Z Z Sλ π= − , where *
IPZ  is an upper bound on the primal 

objective function value after iteration k, and λ  is a constant where 0 2λ≤ ≤ . 
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3.2   Getting Primal Feasible Solution 

After optimally solving the Lagrangean dual problem, we get a set of decision vari-
ables. However, this solution would not be feasible for primal problem because some 
of constraints are not satisfied. Thus, minor modification on decision variables must 
be taken to getting primal feasible solution of problem (IP). Generally speaking, the 
better primal feasible solution is an upper bound (UB) of the problem (IP), while 
Lagrangean dual problem solution guarantees the lower bound (LB) of problem (IP). 
Iteratively, both solving Lagrangean dual problem and getting primal feasible solu-
tion, we get the LB and UB, respectively. So, the gap between the UB and the LB, 
computed by (UB-LB)/LB*100%, illustrates the optimality of problem solution. The 
smaller gap is computed, the better optimality is solved.  

Here we propose a heuristic, denoted Heuristic A, shown in the following to get-
ting primal feasible solution in this paper. There is only one decision variable, i.e. jtz  
used in the problem solving to checking new mobile station. 
  
 
[Heuristic A] 
Step 1. Check capacity constraint (2) for each one base station j . Drop the new user 

call requests, i.e. set jtz =0, which is currently farthest one away from its hom-

ing base station, if violates the constraint; or go to Step 2 otherwise.  
Step 2. Assure QoS constraint (1) in each base station j . Block the new call requests, 

i.e. again set jtz =0, that is currently farthest one away from its homing base 

station, if violates the constraint, or go to Step 2 otherwise. 
Step 3. End heuristic. 
 
 
 

4   Computational Experiments 

4.1   Scenario 

 
For experiments purpose, a few of constants used in the formulation are given as 

follows: they are S/N0= 7 db, Eb/Ntotal =6 db, Mj =120, τ=4, G =156.25, at =10. The 
number of base station ( B ), existing mobile stations ( 'T ) are given to 9, and 50, 
respectively. Concerning about the number of new mobile stations, it is generated in 
Poisson arrival process with λ=50. A description about the Poisson distribution is as 
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follows; (1) min = 28; (2) max = 74; (3) µ= 49.95; (4) median = 50; (5) mode = 51; (6) 
σ = 7.01; (7) σ2 = 49.13; (8) range = 64; (9) skewness = -0.057; and (10) kurtosis = 
0.078. More generically, all locations of base stations, existing as well as new mobile 
stations are randomized, even thought a few of number of new mobile stations gener-
ated in Poisson process may be the same.  

Besides, a combination of VAF, i.e.α , and SIR is also applied to see how these 
parameters affect the total system revenue. For the convenience of comparison, we 
analyze the contribution of optimal revenue from three SIR values with respect to 
three VAF values. 

4.2   Results Analysis 

The analysis comprises of results about optimality of proposed admission control 
algorithm which is solved by Lagrangean relation approach, and revenue contribution 
based on the proposed algorithm. 

Optimality of solution. The frequency statistic of error gaps is based on 500 test 
cases of new mobile stations with Poisson arrival process ( λ =50). The error gap is 
defined by (UB-LB)/LB*100%, where UB and LB is an optimal solution of primal 
problem (IP) and dual one (D), respectively. We see that the gap 0.00% is with 
number of range from 426 to 483 among nine experiments on 500 test cases, this 
implies proposed algorithm guarantees optimality from 85.2% to 96.6%. On the other 
hand, solutions also inevitably incur a few of gaps. For more information about these 
gaps, a comparison of worse and average case on the gaps is illustrated in Table 2. 
Proposed algorithm is with an average gap in range of 0.08% to 0.44%, while the 
worse case is up to 12.5%.  

 

Table 2. Worse and average cases of error gap in solving revenue optimization problem by 
Lagrangean relaxation approach based on 500 test cases of new users with Poisson arrival 
process  (λ=50) 

VAF 0.2 0.3 0.4 
SIR 3 4 5 3 4 5 3 4 5 

Worse 7.14 6.98 6.06 7.90 5.56 4.00 7.84 7.69 12.5Gap 
(%) Average 0.25 0.18 0.13 0.19 0.14 0.08 0.20 0.27 0.44

 
 
 
To claim the optimality, we also depict the percentile of gaps in Fig. 1, in which 

Fig. 1(a), Fig. 1(b), Fig. 1(c) is with VAF=0.2, 0.3, 0.4, respectively. In case of 
VAF=0.2, as shown in Fig. 1(a), all of three SIR values bring on the gap less than 
1.95% is with percentile 0.95, while in case of VAF=0.4, as shown in Fig. 1(c), if we 
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tolerant the gap on 3.25%, 98% (0.98 percentile) of 500 test cases can be efficiently 
solved. No matter which value of SIR and VAF is combined, the gap less than 5.0% 
is with percentile 0.99. The other findings are as follows: (1) both case VAF=0.2 and 
VAF=0.3 has with a similar percentile; (2) there is a stable solution quality in case of 
SIR=3; (3) the solution quality of SIR=5 is varied much more than the other two SIR 
values in the range of percentile from 0.85 to 0.96 when the gap is 0.65%. 

Revenue contribution. The revenue contribution is a managerial implication for 
system operation in terms of admission control policy. Thus, Fig. 2 also illustrates the 
analysis of experiment results on revenue optimization in Fig. 2(a), Fig. 2(b), Fig. 
2(c) with VAF=0.2, 0.3, 0.4, respectively. Obviously, all of three results gain a 
similar revenue distribution on 500 test cases. In case of VAF=0.2, no matter what 
SIR value is given, the revenue contribution is almost the same. Besides, SIR=3 is a 
very stable parameter assigned in experiments. Another interesting finding is that 
revenue contribution of SIR=4 and SIR=5 is similar, but behaves in different VAF 
values of 0.3 and 0.4. 

5   Conclusion 

CDMA-based broadband wireless communications networks provide services on 
ever-growing demands for mobile commerce and mobile computing. To ensure QoS, 
this paper proposes an admission control algorithm for CDMA networks. We take 
account of existing and new mobile stations, but focus on new ones to be admitted 
into the system, and locations of both base stations and mobile stations are randomly 
generated. Number of new mobile stations is modeled as Poisson arrival process on 
500 test cases. Proposed admission control algorithm is applied to maximize the sys-
tem revenue.. The experiments consider total system revenue with respect to VAF 
and SIR. Computational results illustrate that no matter which value of VAF and SIR 
is combined, the error gap less than 5.0% is with percentile 0.99. Besides, SIR=3 is 
with a stable solution quality as well as revenue contribution. In case of VAF=0.2, no 
matter what SIR value is applied, the revenue contribution is almost the same. In 
summary, the combination of VAF=0.2 and SIR=3 would be a near-optimal solution 
in experiments, and proposed algorithm has an average error gap in range of 0.08% to 
0.44%, while the worse case is up to 12.5%. 

In this paper, we do not take mobility into account for admission control. If so, re-
lated issues including re-homing and handover calls must be dealt with. Thus the new 
mobile stations could be further classified with handover calls and real new calls. To 
sustaining services for non-preemptive existing connections, assign the handover 
calls with higher priority than the real new calls would be a reasonable manner. They 
will be treated in the forthcoming works. 
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(a) VAF = 0.2 
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(b) VAF = 0.3  
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(c) VAF = 0.4 

 
Fig. 1.  Percentile of error gap in solving 
revenue optimization problem by La-
grangean relaxation approach, that 500 test 
cases of new users are generated in Poisson 
arrival process (λ =50). The analysis is 
based on combination of two parameters 
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(a) VAF = 0.2 
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(b) VAF = 0.3 
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(c) VAF = 0.4 

 
Fig. 2.  Frequency as a function of optimal 
revenue of problem ZIP, for which ZIP is 
calculated by Lagrangean relaxation ap-
proach, that 500 test cases of new users are 
generated in Poisson arrival process (λ=50). 
The analysis is based on combination of two 
parameters SIR and VAF 
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