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SUMMARY Incorporating sensor nodes with data aggregation capabil-
ity to transmit less data flow in wireless sensor networks could reduce the
total energy consumption. This calls for the efficient and effective data-
centric routing algorithm to facilitate this advantage. In the first part of
this paper, we model the data-centric routing problem by rigorous mixed
integer and linear mathematical formulation, where the objective function
is to minimize the total transmission cost subject to multicast tree con-
straints. With the advancement of sensor network technology, sensor nodes
with configurable transmission radius capability could further reduce en-
ergy consumption. The second part of this paper considers the transmis-
sion radius assignment of each sensor node and the data-centric routing
assignment jointly. The objective function is to minimize the total power
consumption together with consideration of construction of a data aggre-
gation tree and sensor node transmission radius assignment. The solution
approach is based on Lagrangean relaxation in conjunction with the novel
optimization-based heuristics. From the computational experiments, it is
shown that the proposed algorithms calculate better solution than other ex-
isting heuristics with improvement ratio up to 169% and 59% with respect
to fixed transmission radius and configurable transmission radius for net-
work with 300 random generated nodes.
key words: energy saving, data aggregation, data-centric routing, La-
grangean relaxation, wireless sensor networks

1. Introduction

The wireless sensor networks are types of nascent technolo-
gies that probe and collect environmental information, such
as temperature, atmospheric pressure and irradiation by pro-
viding ubiquitous sensing, computing and wireless commu-
nication capabilities. Wireless sensor networks are simi-
lar to mobile ad-hoc networks (MANETs) in that both in-
volve multi-hop communications. However there are two
main differences. First, typical communication mode in
wireless sensor networks is to transmit data from multiple
data source nodes to one data sink node. This is a kind of
reverse-multicast rather than communication between any
pair of nodes in MANETs. Second, since data are col-
lected by multiple sensors there must be some redundancy
in reported data, which are being transmitted by numerous
sources. This would rapidly deplete the energy of sensors
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and result in disconnected network. Data aggregation, there-
fore, has been put forward as a particularly useful function
for routing in terms of energy consumption in wireless sen-
sor networks [5], [6].

Sensor nodes are usually scattered in a sensor field.
When any event occurs, such like surging irradiation or
temperature declining below certain threshold, sensor nodes
within specific sensing range detect this event and collect
the data which would be transmitted to the sink node for tak-
ing further processing. We refer to each sensor node as data
source since data are generated from sensors, and the sink
node as data sink. The application scenario described above
is called event-driven model in which sensors are assigned
to detect a particular event. There are two other different ap-
plications of wireless sensor networks, namely, periodic and
query-based. In periodic scenario, sensors probe environ-
mental information periodically and report their measure-
ments back to the sink node. All sensors in this kind of net-
works are necessitated to be synchronized such that all sen-
sors sense information and report it simultaneously. Query-
based scenario is applied to user-oriented applications. User
can query information from certain area of sensors to ac-
quire measurements that user interested in.

In event-driven model if specific event happens, raw
data are collected and processed before transmission. Re-
dundant and useless data are discarded. The local raw
data are first combined together and the aggregated result is
transmitted to sink node. Interestingly, data are routed along
reverse multicast tree where multiple data sources transmit
information back to the sink node (e.g. Fig. 2). Every non-
leaf node on this reverse multicast tree could perform data
aggregation function to summarize the outputs from down-
stream data sources. This process is called data-centric
routing.

Data aggregation is the key to the data-centric rout-
ing, not only combining the data coming from different
sources and eliminating redundancy, but also minimizing
the total number of transmissions involved in data routing
in such a way to save energy of sensors. In addition to re-
dundancy suppression, other aggregation function could be
MAX, MIN, and SUM. In this paper we assume that every
node posses data aggregation capability, which transmits a
single aggregated packet if it receives multiple input packets
to the same data sink. Figure 1 gives an example of data-
centric routing where the average temperature is reported to
the data sink. The aggregation function is AVG. Label x(y)
at each node represents the local temperature measurement
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Fig. 1 Illustrative example of data aggregation.

is x while the aggregated (average) value so far is y. For ex-
ample, at node 4(5), the average temperature is (4+6)/2 = 5.

In wireless sensor networks, since the transmission
power is associated with the physical distance between the
source and the destination, it is reasonable to assume that
the transmission cost associated with each link is identical
to the transmission cost with its opposite direction. By this
assumption, the total transmission cost of Fig. 1 is identical
to the multicast tree transmission cost where the root is node
(5.875) and the other nodes are the destinations. However,
constructing the minimum cost multicast tree is the well-
known Steiner tree problem, which is proven to be the NP-
completeness [4]. This calls for the effective and efficient
heuristic to solve this problem.

Fixed transmission radius data-centric routing problem
in wireless sensor networks has been studied in existing re-
search. S. Singh [8] shows that by using new power-aware
metrics, for example energy consumed for transmitting per
packet, for determining routes in wireless ad-hoc networks,
shortest cost routing algorithm based on these new power-
aware metrics could reduce cost/packet of routing packets
over shortest hop routing. This inspires us to construct
power-aware metrics (al in Sect. 2), instead of hops which
is used in [6], as the link cost. H. O. Tan [9] proposes cen-
tralized heuristic based on Prim’s shortest path algorithm to
construct a data aggregation tree. This heuristic incorporates
residual energy of sensor nodes into Prim’s algorithm in or-
der to prolong lifetime of sensor nodes. However, as shown
in our computational results, the data aggregation tree con-
structed by shortest path algorithm (shortest path tree, SPT)
is not good enough in terms of transmission cost.

Krishnamachari [6] devises three interesting subopti-
mal aggregation heuristics, namely, Shortest Paths (SPT),
Center at Nearest Source (CNS), and Greedy Incremental
Tree (GIT), respectively. Figure 2 is a simple illustration
of these three heuristics. Note that the transmission cost
on each link each all set to be 1. From Fig. 2, we see that
none of these three heuristics locate optimal solution. In
SPT scheme, each data source node finds the shortest path
back to sink node. Figure 2(b) shows the tree generated
by SPT scheme. CNS selects one node that is nearest to
the sink node as the aggregation node and other data source
nodes connect to this aggregation node by using the shortest
hop path. Figure 2(c) shows the final routing assignment by
adopting CNS heuristic.

In GIT scheme, initially the member in the tree is only
the sink node. Each data source finds the shortest hop path

(a) Optimal cost = 8. (b) SPT cost = 11.

(c) CNS cost = 9. (d) GIT cost = 9.

Fig. 2 Simple illustrative example of SPT, CNS, and GIT.

to this tree and the data sources with the minimum hop along
with the intermediate nodes on this path are included in this
tree. This process is repeated until all data source nodes are
included in the tree. Note that how to properly select the
path when there are two paths with the same hop distance to
the tree will have significant impact on the solution quality
of the GIT. In Fig. 2(d), after the nearest node 1 connecting
to sink node, node 2 and 3 are three hops away from the tree
consisting of sink node and node 1. If node 2 selects path
through node 4 and 5 to reach sink node then the resultant
tree will be optimal case.

The basic idea of fixed transmission radius data-centric
algorithms is to save energy by reducing number of sensor
nodes involved in data aggregation tree. If the transmission
radius of sensor node could be configured, it is believed that
energy consumption could be further reduced. The power
consumption of transmitting data distance r is measured as
rα + c, where α is a signal attenuation constant (usually be-
tween 2 to 4) and c is a positive constant that represents
signal processing. [3] studies the tradeoff between power
consumption transmission radius and coverage of transmis-
sion node. For long transmission radius, more sensor nodes
could be covered such that the total number of transmission
could be reduced. However, with large signal attenuation
constant (e.g. 4), long transmission radius incur significant
power consumption that would sacrifice the gain from re-
duced total number of transmission.

In this paper, we first propose an optimization-based
heuristics to solve the fixed transmission radius data-centric
routing problems (DCR) in wireless sensor networks. The
problem is first formulated as a mixed integer and linear pro-
gramming (MILP) problem where the objective function is
to minimize the total transmission cost used for all multi-
cast groups subject to multicast tree and data aggregation
constraints. In the second part of this paper, besides rout-
ing assignment, we also study the transmission radius as-
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signment of sensor nodes to further reduce total energy con-
sumption. Hence, the energy-efficient data-centric routing
problem (EDCR) in wireless sensor network could be for-
mally defined as minimizing total power consumption sub-
ject to reverse-multicast tree, and configurable transmission
radius. We propose the Lagrangean relaxation scheme in
conjunction with the optimization-based heuristics to solve
these two problems. From the computational experiments,
the proposed solution approaches are superior to the existing
heuristics.

The remainder of this paper is organized as follows.
In Sect. 2, a MILP formulation of basic model of the DCR
problem is proposed. In Sect. 3, solution approaches to ba-
sic model based on Lagrangean relaxation are presented.
In Sect. 4 heuristics to basic model are developed for cal-
culating good primal feasible solution. In Sect. 5, compu-
tational results of DCR problem are reported. In Sect. 6,
mathematical formulation of EDCR problem is proposed.
In Sect. 7, solution approaches to extension model based on
Lagrangean relaxation are presented. In Sect. 8, heuristics
are developed to get good primal feasible solution of EDCR
problem. In Sect. 9, computational experiments of EDCR
problem are reported. Finally, Sect. 10 concludes this paper.

2. Problem Formulation to DCR Model

A data-centric wireless sensor network is modeled as a
graph in which sensors are represented as nodes and the
arc connected two nodes indicates that one node is within
the other’s transmission radius. The definition of notations
adopted in the formulation is listed below.

G The set of all multicast groups

Dg The set of data source nodes for the multi-
cast group g

L The set of all links in the graph

Pgd The set of candidate paths from the data
source node d to the sink node of multicast
group g

hg Longest distance of shortest path to reach
farthest data source node for multicast
group g

al Unit power aware transmission cost asso-
ciated with the link l

δpl The indicator function which is 1 if the link
l is on the path p and 0 otherwise

In this formulation, we generalize the formulation to
consider multiple multicast groups, i.e. multiple data sink
node. The decision variables for the wireless sensor net-
works routing problem are denoted as follows.

Cl Number of data units transmitted through
link l

ygl 1 if the multicast group g uses the link l and
0 otherwise

xgpd 1 if the multicast group g uses the path p to
reach the source node d and 0 otherwise

The data-centric routing problem in wireless sensor
networks is then formulated as the following combinatorial
optimization problem (IP).

ZIP = min
∑

l∈L
alCl (IP)

subject to:
∑

g∈G
ygl ≤ Cl ∀l ∈ L (1)

Cl ∈ {0, 1, 2, 3, ...., |G|} ∀l ∈ L (2)∑

p∈Pgd
xgpdδpl ≤ ygl ∀g ∈ G, l ∈ L, d ∈ Dg (3)

ygl = 0 or 1 ∀g ∈ G, l ∈ L (4)∑

l∈L
ygl ≥ max

{
hg,
∣∣∣Dg
∣∣∣
}

∀g ∈ G (5)

∑

d∈Dg

∑

p∈Pgd
xgpdδpl ≤

∣∣∣Dg
∣∣∣ygl ∀g ∈ G, l ∈ L (6)

∑

p∈Pgd
xgpd = 1 ∀g ∈ G, d ∈ Dg (7)

xgpd = 0 or 1 ∀p ∈ Pgd, g ∈ G, d ∈ Dg. (8)

The objective function of (IP) is to minimize the to-
tal data transmission cost for the wireless sensor networks,
which equals to the total multicast routing cost. Constraint
(1) requires that the number of multicast groups adopting
link l on its multicast tree should be less then or equal to the
number of data units transmitted through link l. Constraint
(2) requires that number of data units on link l be at most
cardinality of G, i.e. sensor node can aggregate data belong-
ing to the same multicast group. Constraint (3) requires that
if one path is selected for the group g destined to the des-
tination d, the path must also be on the tree adopted by the
multicast group g.

Constraints (4) and (5) require that number of links on
the multicast tree adopted by multicast group g be at least
the maximum of hg and

∣∣∣Dg
∣∣∣. Note that both hg and

∣∣∣Dg
∣∣∣ are

legitimate lower bounds on the number of links on the mul-
ticast tree adopted by the multicast group g [10]. From the
computational experiments, introducing Constraint (5) will
significantly improve the solution quality. Note that

∣∣∣Dg
∣∣∣ and

hg could be calculated in advance, as shown in the Calcu-
late hg algorithm proposed in [10].

The left hand side term of Constraint (6) calculates the
number of paths destined for data source nodes pass through
link l for a multicast group. The right hand side term of
Constraint (6) is at most

∣∣∣Dg
∣∣∣. When the union of the paths
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destined for the data source nodes does exist a cycle, and
this cycle contains link l, then Constraint (6) would not be
satisfied since there would be many paths passing through
this link. In other words, Constraint (6) is to restrict the
union of the paths destined for data source nodes contains
a cycle. Constraints (7) and (8) require that any multicast
group g selects exactly one path destined for its destination
d. By enforcing Constraints (6), (7) and (8), the union of the
paths shall be a tree.

3. Lagrangean Relaxation to DCR Model

The algorithm development is based upon Lagrangean re-
laxation. In (IP), by introducing Lagrangean multiplier vec-
tor u1, u2, u3, we dualize Constraints (1), (3) and (6) to ob-
tain the following Lagrangean relaxation problem (LR).

ZD(u1, u2, u3) = min
∑

l∈L
alCl +

∑

l∈L
u1

l


∑

g∈G
ygl −Cl



+
∑

g∈G

∑

d∈Dg

∑

l∈L
u2
gdl


∑

p∈Pgd
xgpdδpl − ygl



+
∑

g∈G

∑

l∈L
u3
gl


∑

d∈Dg

∑

p∈Pgd
xgpdδpl − |Dg|ygl

 (LR)

subject to:

Cl ∈ {0, 1, 2, 3, ...., |G|} ∀l ∈ L (9)

ygl = 0 or 1 ∀g ∈ G, l ∈ L (10)∑

l∈L
ygl ≥ max

{
hg,
∣∣∣Dg
∣∣∣
}

∀g ∈ G (11)

∑

p∈Pgd
xgpd = 1 ∀g ∈ G, d ∈ Dg (12)

xgpd = 0 or 1 ∀g ∈ G, d ∈ Dg, p ∈ Pgd. (13)

We can decompose (LR) into three independent subprob-
lems.

Subproblem 1: for Cl

min
∑

l∈L
(al − u1

l )Cl (SUB1)

subject to (9).

Subproblem 2: for ygl

min
∑

g∈G

∑

l∈L
(u1

l − u3
gl|Dg|)ygl −

∑

g∈G

∑

l∈L

∑

d∈Dg
u2
gdlygl

(SUB2)

subject to (10) and (11).

Subproblem 3: for xgpd

min
∑

g∈G

∑

d∈Dg

∑

l∈L

∑

p∈Pgd
(u2
gdl + u3

gl)xgpd (SUB3)

subject to (12) and (13).

(SUB1) can be further decomposed into |L| indepen-
dent subproblems. For each link l,

min(al − u1
l )Cl (SUB1,1)

subject to:

Cl ∈ {0, 1, 2, 3, ...., |G|} (14)

If coefficient of link l, (al − ul
l), is negative then set

Cl to be |G| otherwise 0. The computational complexity of
(SUB1) is O(1) for each link l.

(SUB2) can be further decomposed into |G| indepen-
dent subproblems. For each multicast group g,

min
∑

l∈L

u
1
l − u3

gl|Dg| −
∑

d∈Dg
u2
gdl

ygl (SUB2.1)

subject to:

ygl = 0 or 1 ∀l ∈ L (15)∑

l∈L
ygl ≥ max

{
hg,
∣∣∣Dg
∣∣∣
}

(16)

By assigning the arc weight of each link l to be u1
l −

u3
gl|Dg| −

∑
d∈Dg u2

gdl, the algorithm proposed in [10] could
optimally solve (SUB2.1). The computational complexity
of the algorithm is O

(
|L|(|Dg| + log |L|)

)
for each multicast

group g.
(SUB3) can be further decomposed into

∑
g∈G
∣∣∣Dg
∣∣∣

independent shortest path problems with nonnegative arc
weight. For each shortest path problem it can be effec-
tively solved by Dijkstra’s algorithm. The computational
complexity of Dijkstra’s algorithm is O(|N |2) for each desti-
nation of the multicast group.

According to the algorithms proposed above, we could
effectively solve the Lagrangean relaxation problem opti-
mally. Based on the weak Lagrangean duality theorem,
ZD(u1, u2, u3) is a lower bound on ZIP. We could calculate
the tightest lower bound by using the subgradient method
[1].

4. Getting Primal Feasible Solutions to DCR Model

To obtain the primal feasible solutions to the basic model
of data-centric wireless sensor routing problem, solutions to
the Lagrangean relaxation (LR) is considered. We propose
the following two heuristics to get primal feasible solutions.

The first heuristic is to construct shortest path tree
based on the solutions in (SUB3). However, in (SUB3),
the union of the shortest path for each data source node
may not be a tree since the multiplier u2

gdl is associated with
each data source node d. In other words, each data source
node may have different arc weight on link l, this results in
the possibility of having cycle for the union of the short-
est paths. Therefore, we set the arc weight of link l to be
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(
∑

d∈Dg
u2

dgl)/|Dg| + u3
gl + al , so that the arc weight for link l is

the same for all data source nodes of multicast group g. This
ensures that the union of the shortest paths destined to every
data source in a multicast group shall be a tree. In order to
take account the transmission cost, we also incurs al on the
arc weight. The computational complexity for first heuristic
is O(|G||N |2).

The basic idea of the second heuristic is GIT. Accord-
ing to [6], GIT is a better heuristic than shortest path tree
heuristics. By leveraging on the solutions to the dual prob-
lem (LR), we set the arc weight for link l as al + u3

gl. And
then we implement the GIT heuristics to construct the tree.
The first term al is used to reflect the transmission cost. The
second term u3

gl reflects the penalty cost for link l to be a link

in a cycle. By incorporating the al+u3
gl as the arc weight, we

try to achieve minimum transmission cost and the gain from
data-centric routing (tree) at the same time. The computa-
tional complexity of second heuristic is O(|N |2 ×∑g∈G

∣∣∣Dg
∣∣∣).

In the following, we show that complete algorithm (de-
noted as LGR) to solve (IP).

Algorithm LGR
begin

Initialize the Lagrangean multiplier vector (u1, u2, u3) to
be all zero vectors;

run Calculate hg;
UB := very large number; LB := 0;
improve counter := 0; step size coefficient := 2;
for iteration := 1 to Max Iteration Number do
begin

run subproblem (SUB1);
run subproblem (SUB2);
run subproblem (SUB3);
calculate ZD;
if ZD > LB then LB := ZD and improve counter := 0;
else improve counter := improve counter + 1;
if improve counter = Improve Threshold then

improve counter := 0; δ := δ / 2;
run Primal Heuristic Algorithm;
if ub < UB then UB := ub;
/* ub is the newly computed upper bound. */
run update-step-size;
run update-Lagrangean-multiplier;

end;
end;

The computational complexity for algorithm LGR is
O(|N |2 ×∑g∈G

∣∣∣Dg
∣∣∣ + |L||G| log |L|) for each iteration.

5. Computational Experiments to DCR Model

The proposed algorithms to basic model for the data-
centric routing problem developed in Sects. 3 and 4 are
coded in C and run on a PC with INT ELT M PIII-1.3G.
Max Iteration Number and Improve Threshold are set to
2000 and 50 respectively. The step size coefficient δ is ini-

tialized to be 2 and will be halved when the objective func-
tion value of the dual problem is not improved for iterations
up to Improve Threshold.

Two source placement models, namely, event-driven
and random-source model are tested. In random-source
model, non-sink nodes are randomly selected to be data
source nodes. Unlink in event-driven model, the source
nodes are not necessarily clustered. Query-based applica-
tions and periodic applications could be classified as the
random-source model. We construct the network topology
for |N |=300 nodes which are randomly placed in a 1 × 1
square unit area. The power aware transmission cost (al) is
defined as 100 × Euclidean distance if link length does not
exceed the transmission radius. In Fig. 3 and Fig. 5, maxi-
mum communication radius is configured as 0.125. That is
to say al = 100 × Euclidean distance if length of link l ≤
0.125, otherwise al = ∞. In Figs. 3–6, SPT, CNS and GIT
are the solution approaches proposed in [6]. Heuristic 1 and
heuristic 2 are the solution approaches proposed in Sect. 4.
Each plotted point in Figs. 3–6 is a mean value over 5 simu-
lation results.

Figure 3 shows the transmission cost of different num-
ber of source nodes in random-source model. We could
see that the second heuristics proposed in Sect. 4 outper-
forms than the other four solution approaches under all dif-
ferent number of source nodes. As the number of data
source nodes grows, the improvement ratio is more signif-
icant. Figure 5 shows the similar computational results for
event-driven model. Figure 4 shows the transmission cost
for different communication radii for fixed 10 source nodes
in random-source model. Heuristic 2 still outperforms than
other approaches. Note that as decreasing the communi-
cation radius, the improvement ratio of second heuristic is
larger. This occurs because when transmission radius is
small, only links with shorter distance could exist. The rout-
ing path must have more hops in order to reach destination.
Therefore, the advantage resulting from data aggregation
will be more significant.

Similar computational results could also be observed

Fig. 3 Transmission cost vs. number of sources in random-source model.
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Fig. 4 Transmission cost vs. communication radius in random-source
model.

Fig. 5 Transmission cost vs. number of sources in event-driven model.

Fig. 6 Transmission cost vs. communication radius in event-driven
model.

Table 1 Improvement ratio of heuristic 2.

Improvement Ratio Fig. 3 Fig. 4 Fig. 5 Fig. 6

SPT 75 110 97 169

CNS 71 94 33 58

GIT 15 18 11 12

in Fig. 6 for event-driven model. It is interesting to ob-
serve that the improvement ratio in random-source model
is often larger than in event-driven model. That is because
sources are randomly selected not clustered in random-
source model, and the advantages of tree will be more sig-
nificant. In order to measure how good our heuristic 2 algo-
rithm than the other approaches, we define an improvement
ratio which is defined (other approach − heuristic 2)/(heuris-
tic 2) × 100. From Table 1, the improvement ratio of heuris-
tic 2 over SPT, CNS and GIT is up to 169%, 94% and 18%
respectively.

6. Problem Formulation to EDCR Model

We first show the notations of the EDCR model.

N The set of all sensor nodes

Psq The set of all candidate paths that the data
source node s connects to the sink node q

S The set of all data source nodes

h Longest distance of shortest path to reach
farthest data source node

δp(n,k) The indicator function which is 1 if the link
(n, k) is on the path p and otherwise 0

dnk Euclidean distance between node n and
node k

q The data sink node

Rn The set of all possible transmission radii
that the node n can adopt

en(rn) Energy consumption function of node n,
which is a function of nodes transmission
radius

In this EDCR model, we introduce the outgoing link
constraint (show in Constraint (20)) to further enforce the
tree constraint. In order to model the outgoing link con-
straint, we model the link l as the node pair (n, k). n is the
origin node of the link l and k is the termination node of link
l. The decision variables are denoted as follows.

ZIP1 = min
∑

n∈N
en(rn) (IP1)

subject to:
∑

p∈Psq

xspδp(n,k) ≤ y(n,k) ∀n, k ∈ N, s ∈ S (17)

∑

n∈N

∑

k∈N
y(n,k) ≥ max{h, |S |} (18)
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∑

s∈S

∑

p∈Psq

xspδp(n,k) ≤ |S | · y(n,k) ∀n, k ∈ N (19)

∑

k∈N
y(n,k) ≤ 1 ∀n ∈ N (20)

y(n,k)dnk ≤ rn ∀n, k ∈ N (21)

rn ∈ Rn ∀n ∈ N (22)

y(n,k) = 0 or 1 ∀n, k ∈ N (23)∑

p∈Psq

xsp = 1 ∀s ∈ S (24)

xsp = 0 or 1 ∀s ∈ S , p ∈ Psq. (25)

rn Transmission radius of the node n

y(n,k) 1 if the link (n, k) is on the tree

xsp 1 if the data source node s uses the path p
to reach the sink node q

The objective function of (IP1) is to minimize total
power consumption of the data aggregation tree for trans-
mitting data to the sink node. Constraint (17) requires that
if one path p is selected for source node s to reach sink node
q, the path must also be on the tree. This constraint also en-
forces that if link (n, k) is on the path p adopted by source
node s to reach sink node, then y(n,k) must be 1.

Constraint (18) and (23) require that total number of
links on the aggregation tree be at least the maximum of h
and the cardinality of S . Just as (IP) in Sect. 2, introducing
constraint (18) is to improve the solution quality.

Constraint (19) is to restrict the union of the paths des-
tined for data source nodes contains a cycle just as Con-
straint (6) in (IP). Constraint (20) is an outgoing link con-
straint. All intermediate nodes on the aggregation tree
should have only one outgoing link (e.g. node 4 has two
incoming link and only one outgoing link in Fig. 2(a)). Con-
straint (24) and (25) require that any data source adopts only
one path destined for sink node in aggregation tree. By en-
forcing Constraints (19), (20), (24), and (25) the union of
the paths shall be a reverse multicast tree.

Constraint (21) is a transmission radius coverage con-
straint. This constraint enforces that if link (n, k) is used by
aggregation tree, the transmission radius of node n should
be large enough in order to cover node k. Constraint (22) in-
dicate the set of possible transmission radii for sensor node,
which is a discrete and finite set. By enforcing Constraints
(21) and (22), we ensure that every link on the aggregation
tree is covered within the transmission radius of the origin
node of the link.

After presenting the mathematical formulation of the
EDCR model, we could summarize the major difference be-
tween the DCR and EDCR model. In the DCR model, after
the maximum transmission radius is given, the topology of
whole network can be constructed. Hence, the data centric
aggregation algorithm developed for DCR model could also
be applied to wired sensor network when al represents the
link cost of physical link. On the other hand, in the EDCR

model, the transmission radius of sensor node is also a de-
cision variable. In other words, network topology needs to
be determined by the transmission radius assignment of the
sensor node. Such transmission radius assignment makes
EDCR model more general than the DCR model.

7. Lagrangean Relaxation to EDCR Model

The algorithm development is based upon Lagrangean re-
laxation. In (IP1), by introducing Lagrangean multiplier
vector v1, v2, v3, we dualize Constraints (17), (19) and (21) to
obtain the following Lagrangean relaxation problem (LR1).

ZD1(v1, v2, v3) = min
∑

n∈N
en(rn)

+
∑

n∈N

∑

k∈N

∑

s∈S
v1(n,k)s


∑

p∈Psq

xspδp(n,k) − y(n,k)



+
∑

n∈N

∑

k∈N
v2(n,k)


∑

s∈S

∑

p∈Psq

xspδp(n,k) − |S | · y(n,k)



+
∑

n∈N

∑

k∈N
v3(n,k)(y(n,k)dnk − rn) (LR1)

subject to:
∑

n∈N

∑

k∈N
y(n,k) ≥ max{h, |S |} (26)

∑

k∈N
y(n,k) ≤ 1 ∀n ∈ N (27)

rn ∈ Rn ∀n ∈ N (28)

y(n,k) = 0 or 1 ∀n, k ∈ N (29)∑

p∈Psq

xsp = 1 ∀s ∈ S (30)

xsp = 0 or 1 ∀s ∈ S , p ∈ Psq. (31)

We can decompose (LR1) into three independent subprob-
lems.

Subproblem 4: for rn

min
∑

n∈N

en(rn) − rn

∑

k∈N
v3(n,k)

 (SUB4)

subject to (28).

Subproblem 5: for y(n,k)

min
∑

n∈N

∑

k∈N

v3(n,k)dnk − v2(n,k)|S | −
∑

s∈S
v1(n,k)s

 y(n,k)

(SUB5)

subject to (26), (27), and (29).

Subproblem 6: for xsp
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min
∑

n∈N

∑

k∈N

∑

s∈S

∑

p∈Psq

(v1(n,k)s + v
2
(n,k))xspδp(n,k) (SUB6)

subject to (30) and (31).

(SUB4) can be further decomposed into |N | indepen-
dent subproblems. For each node n,

min en(rn) − rn

∑

k∈N
v3(n,k) (SUB4.1)

subject to:

rn ∈ Rn (32)

Since Rn is a finite and discrete set. We could exam-
ine all possible transmission radii of node n to identify the
smallest value of the objective function. The computational
complexity of (SUB4) is O(|Rn|) for each node n.

The proposed algorithm for solving (SUB5) is de-
scribed as follows:

Step 1: For each link (n, k) compute the coefficient
v3(n,k)dnk − v2(n,k)|S | −

∑
s∈S
v1(n,k)s for each y(n,k).

Step 2: For all outgoing links of node n, find the smallest
coefficient. If the smallest coefficient is negative then
set the corresponding y(n,k) to be 1 and the other outgo-
ing links y(n,k) to be 0, otherwise set all outgoing link
y(n,k) to be 0. Repeat step 2 for all nodes.

Step 3: If the total number of y(n,k) whose value is 1 (de-
note as T ) are smaller than max{h, |S |}, then identify
the nodes that have all its outgoing links y(n,k) = 0.
From these identified nodes, selected (max{h, |S |} − T )
number of these identified nodes whose corresponding
smallest coefficients are the smallest. Then, assign the
outgoing link y(n,k) = 1 with the smallest coefficient for
each of these selected nodes.

The computational complexity of above algorithm is
O(|N |2).

(SUB6) can be further decomposed into |S | indepen-
dent shortest path problems with nonnegative arc weight
whose value is v1(n,k)s + v

2
(n,k). For each shortest path prob-

lem it can be effectively solved by Dijkstra’s algorithm. The
computational complexity of Dijkstra’s algorithm is O(|N |2)
for each source node.

According to the algorithms proposed above, we could
effectively solve the Lagrangean relaxation problem (LR1)
optimally. Based on the weak Lagrangean duality theorem,
ZD1(v1, v2, v3) is a lower bound on ZIP1. We could calculate
the tightest lower bound by using the subgradient method
[1].

8. Getting Primal Feasible Solutions to EDCR Model

To obtain the primal feasible solutions to the extension of
data-centric wireless sensor routing problem, solutions to
the Lagrangean relaxation (LR1) is considered. We propose
the following two heuristics to get primal feasible solutions.

The first heuristic is to construct shortest path tree
based on the solutions in (SUB6). However, in (SUB6), the
union of the shortest path for each data source node may not
be a tree since the multiplier v1(n,k)s is associated with each
data source node s. In other words, each data source node
may have different arc weight on link (n, k), this results in
the possibility of having cycle for the union of the shortest
paths. Therefore, we set the arc weight of link (n, k) to be∑
s∈S
v1(n,k)s/|S |+v2(n,k)+ (dnk/4)2 , so that the arc weight for link

(n, k) is the same for all data source nodes. This ensures that
the union of the shortest paths destined to every data source
shall be a tree. In order to take account the transmission
power consumption, we also incurs transmission distance
dnk between node n and k on the arc weight. After the ag-
gregation tree is determined, the minimum power to cover
each link on the tree could be determined. The computa-
tional complexity for first heuristic is O(|N |2).

The principle idea of the second heuristic is also lever-
aging on GIT. We set the arc weight for link (n, k) as v2n,k +
(dnk/4)2 and then running the GIT algorithm. The idea of
divide dnk by 4 is for normalization purpose such that arc
weight will not be dominated by dnk. The first term v2(n,k) re-
flects the penalty cost for link (n,k) to be a link in a cycle.
The second term (dnk/4)2 is used to reflect the transmission
power consumption. By incorporating the v2n,k + (dnk/4)2

as the arc weight, we try to achieve minimum transmission
cost and the gain from data-centric routing (tree) at the same
time. After the aggregation tree is determined, the mini-
mum power to cover each link on the tree could be deter-
mined. The computational complexity of second heuristic is
O(|N |2 × |S |).

In the following, we show that complete algorithm (de-
noted as LGR1) to solve (IP1).

Algorithm LGR1
begin

Initialize the Lagrangean multiplier vector (v1, v2, v3) to
be all zero vectors;

run Calculate hg to determine h;
UB := very large number; LB := 0;
improve counter := 0; step size coefficient := 2;
for iteration := 1 to Max Iteration Number do
begin

run subproblem (SUB4);
run subproblem (SUB5);
run subproblem (SUB6);
calculate ZD1;
if ZD1 > LB then LB := ZD1 and improve counter := 0;
else improve counter := improve counter + 1;
if improve counter = Improve Threshold then

improve counter := 0; δ := δ / 2;
run Primal Heuristic Algorithm;
if ub < UB then UB := ub;
/* ub is the newly computed upper bound. */
run update-step-size;
run update-Lagrangean-multiplier;
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end;
end;

And the computational complexity for LGR1 is
O(|N |2 × |S | + ∑

n∈N
|Rn|) for each iteration.

9. Computational Experiments to EDCR Model

The proposed algorithms to EDCR model developed
in Sects. 7 and 8 are coded in C and run on a PC
with INT ELT M PIII-1.3G. Max Iteration Number and Im-
prove Threshold are set to 1000 and 25 respectively. The
step size coefficient δ is initialized to be 2 and will be halved
when the objective function value of the dual problem is not
improved for iterations up to Improve Threshold. The com-
putational time is all within five minutes for all tested cases.

Random-source model is tested. In random-source
model, non-sink nodes are randomly selected to be data
source nodes. We construct the network topology for
|N |=150 nodes which are randomly placed in a 1 × 1 square
unit area. The transmission power falls as 1/dn [7], n ≥
2, where d represents the Euclidean distance. Thus, the
cost of power aware function en(rn) is defined as square of
100 × Euclidean distance if link length does not exceed the
maximum transmission radius. The set of all possible trans-
mission radii of sensor node n (Rn) is configured to begin
from 0 to maximum transmission radius. Elements in the
radius set are increased by 0.01 successively. In Fig. 7, max-
imum transmission radius is set to be 0.15. Each plotted
point in Figs. 7 and 8 is a mean value over 5 experimental
results. In all of experiments we assume that there is only
one group in sensor networks. In order to show the solution
quality of our proposed algorithm, we implement three al-
gorithms developed in [6] to determine the aggregation tree
and then to determine the minimum transmission cost for
comparison.

Figure 7 shows the transmission cost of different num-
ber of source nodes in random-source model. We could see
that the second heuristics proposed in Sect. 8 is superior to
the other four solution approaches under all different num-

Fig. 7 Transmission power consumption cost vs. number of sources in
random-source model.

ber of source nodes. In addition, as the number of data
source nodes grows the improvement ratio is more signif-
icant, which is similar to the DCR model. Figure 8 shows
the transmission cost for different maximum transmission
radii fixed 8 source nodes in random-source model. The
maximum transmission radius is the maximum allowable
transmission range that sensor nodes can chose. Heuristic
2 still outperforms than other approaches. Note that as de-
crease of the transmission radius, the improvement ratio of
second heuristic is larger. This result shows the similar re-
sults in the DCR model. Another interesting point is that
the cost decreases with increasing maximum transmission
radius because of the expanded feasible region. However,
we can observe that when the maximum transmission radius
is increased to a certain point (e.g. 0.17 in Fig. 8), the cost
can not be reduced any more. This is because the power
consumption cost is defined as the square of transmission
radius, and the cost will be increased rapidly when the large
transmission radius is chosen. Therefore, even though the
maximum allowable transmission radius is increased, we
will not be willing to turn on the larger transmission radius.

From Table 2, the improvement ratio of heuristic 2 in
EDCR over SPT, CNS and GIT is up to 59%, 49% and 10%
respectively. The convergence behavior of our proposed al-
gorithm is shown in Fig. 9. In most of the cases we ob-
serve that the upper bound is good enough (within 1% gap
in comparison with the final upper bound) at 100th iteration.
Thus, when in real-time environment, we could stop the so-
lution procedure at 100th iteration to reduce the computa-
tional time by 10 times (from 5 minutes to 30 seconds) with
only at most one percent solution quality penalty. Figure 10

Fig. 8 Transmission power consumption cost vs. maximum transmission
radius in random-source model.

Table 2 Improvement ratio of heuristic 2.

Improvement Ratio Fig. 7 Fig. 8

SPT 59 49

CNS 49 33

GIT 10 10
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Fig. 9 Behavior of convergence.

Fig. 10 Computational time per iteration.

shows the computational time comparison of all algorithms
per iteration under different number of sources. Although
our proposed algorithms suffer from the slightly longer com-
putational time, we can get better data aggregation tree in
terms of transmission cost and energy saving. Furthermore,
the improvement ratio of our proposed algorithm will be
more significant when the number of source nodes increase.
Another interesting point is that when the transmission ra-
dius capability of sensor nodes is limited (or equivalently,
when sensor nodes are deployed in a large area), the solu-
tion quality of our proposed algorithm is even better. To
summarize, as compared to existing heuristics, although the
disadvantage of our algorithms is the slightly longer com-
putational time, however the advantages of our algorithms
are better data-centric aggregation capability and better so-
lution quality particularly in increasing number of source
nodes and large sensor node deployment area.

10. Conclusion

The data-centric routing could reduce the transmission
power for sensor nodes with data aggregation capability
in wireless sensor networks. In this paper, we first pro-

pose mixed integer and linear mathematical formulation for
data centric routing problem. Solution approaches based on
Lagrangean relaxation and optimization-based heuristic are
proposed to solve this problem. From the computational ex-
periments, the proposed algorithm for DCR problem is su-
perior to the existing approaches (SPT, CNS and GIT [6])
with improvement ratio up to 169%, 94% and 18% respec-
tively.

Besides routing assignment, transmission radius as-
signment is also considered to address the self-organized
property of sensor node. In the second part of this paper, we
jointly consider transmission radius assignment and routing
assignment in data-centric sensor networks. Lagrangean re-
laxation techniques in conjunction with optimization-based
heuristics are proposed for the EDCR problem. Through ex-
perimental results, the proposed algorithm for EDCR model
still outperforms all other solution approaches. Besides so-
lution quality, the computational time for the proposed al-
gorithms of DCR problem are all within five minutes in
the network topology with randomly generated 300 nodes
and 150 nodes. From the solution quality and the compu-
tational time, the proposed optimization-based approaches
could effectively and efficiently solve the energy-efficient
data-centric routing problems in wireless sensor networks.
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