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In  virtual circuit networks, all the packets in a session are transmitted over exactly one 
path established between the origin and the destination. For each origin-destination 
pair, it is assumed that there are multiple sessions. We consider the problem of choosing 
a path for each session so as to minimize the average packet delay in the network. We 
formulate this problem as a nonlinear multicommodity flow problem with integer deci- 
sion variables. An iterative scheme that is similar to local search is developed to solve 
this problem. In each iteration, we apply Lagrangean relaxation and a multiplier adjust- 
ment procedure to solve a restricted problem. We show that the Lagrangean dual 
problem can be solved exactly by solving a convex program. In computational experi- 
ments, our algorithm determines solutions that are within 1% of an optimal solution in 
minutes of CPU time for networks with 26-61 nodes. In addition, we show that our 
proposed algorithm is better both theoretically and computationally than K(0)-ordering, 
single-path routing, or round-off Frank-Wolfe heuristics. 

1. INTRODUCTION 

The ARPANET inspired a great deal of research on computer communica- 
tion networks with datagram service. In datagram networks, the packets sent 
for a particular user pair may be routed over different paths. The routing 
problem in datagram networks has been extensively studied. Centralized [4, 71 
and distributed [3, 8, 211 routing algorithms have been proposed. More re- 
cently, networks such as SNA [ l l ,  141, TYMNET [17, 201, TELENET [12], 
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and TRANSPAC [6] have been designed to provide virtual circuit service. In 
virtual circuit service, all the packets transmitted for a particular user pair (a 
session) are sent over exactly one path. The primary motivation for using this 
type of service is that all the packets arrive at the destination in the order in 
which they were sent. Note that in datagram networks packets can arrive out of 
order and thus must be reordered at the destination. Furthermore, most of the 
future networks such as ISDN will provide virtual circuit service [lo]. 

The routing problem in datagram networks is usually formulated as a convex 
multicommodity flow problem. In contrast, the combinatorial nature of the 
routing problem in virtual circuit networks results from the fact that a session 
must be assigned to exactly one path. Courtois and Semal [5] modified the flow 
deviation method [7] to develop a heuristic routing algorithm for virtual circuit 
networks. The flow deviation method is the Frank-Wolfe method specifically 
tailored to solve an uncapacitated multicommodity flow problem with a convex 
objective function. They obtained solutions that are within 3% (on the average) 
of the optimal solutions for lightly loaded networks. However, no results were 
reported for heavily loaded networks. Segall [ 181 formulated the routing prob- 
lem in virtual circuit networks as a convex programming problem and modified 
Gallager’s algorithm [8] to develop a distributed routing algorithm. However, in 
his work, the routing decision variables were assumed to be continuous. There- 
fore, the combinatorial nature of the virtual circuit routing problem is not 
captured. Tsai [ 191 studied the convergence of gradient projection methods [2] 
in an asynchronous stochastic quasi-static virtual circuit network. He showed 
that the algorithms converge to a neighborhood of a long-term optimal routing. 
In addition, the neighborhood converges to zero if the number of virtual circuits 
approaches infinity while the total traffic requirement remains the same. In 
other words, the traffic requirement of each session needs to approach zero in 
order to obtain an optimal routing. With the “many small users” assumption, 
the inherent discrete structure of the virtual circuit routing problem was ig- 
nored. 

Gavish and Hantler [9] considered the problem of selecting the first route 
from a candidate route set for each origin-destination pair in virtual circuit 
networks to minimize the average packet delay. They formulated the problem 
as a nonlinear multicommodity flow problem with 0-1 decision variables. They 
applied Lagrangean relaxation and the subgradient optimization method to 
develop a centralized algorithm to solve the problem. Their computational 
results showed that their heuristic algorithm is effective in finding good feasible 
solutions and determining tight lower bounds on the minimal expected delay. 

Lin and Yee [ 161 slightly modified the formulation in [9] and developed a new 
multiplier adjustment procedure so that the problem can be solved by distrib- 
uted computation. A common weakness of [9] and [16] is that all the traffic for 
each origin-destination (0-D) pair is routed over one path. For the case of 
“large and balanced networks” [15], this single-path routing (they called it 
fixed routing) is effective. A network is referred to as balanced if the traffic 
requirements of the 0-D pairs do not differ by very much. However, in gen- 
eral, the minimal achievable average delay is smaller when the routing can 
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route sessions over a number of paths than when the algorithm is constrained to 
use one path for each session for each 0-D pair. 

In this paper, we consider the virtual circuit routing problem where (i) there 
are a number of sessions for each 0-D pair and (ii) different sessions for an 0- 
D pair may be assigned to different paths. A formulation of this problem is 
given and an algorithm is developed based upon Lagrangean relaxation. 

The remainder of this paper is organized as follows: In Section 2, the routing 
problem is formulated as a nonlinear combinatorial optimization problem. In 
Section 3, a Lagrangean relaxation approach to the problem is presented. In 
Section 4, a solution procedure to the routing problem is presented. In Section 
5 ,  the computational results are reported. 

2. PROBLEM FORMULATION 

In this section, we generalize the models in [9] and [I61 where there is one 
session for each 0-D pair. A virtual circuit communications network is mod- 
eled as a graph where the processors are represented by nodes and the com- 
munication channels are represented by arcs. Let V = { 1 ,2 ,  . . . , N }  be the set 
of nodes in the graph, and let L denote the set of communication links in the 
network. Let W be the set of 0-D pairs in the network. For each 0-D pair w E 
W, multiple sessions may be established and the arrival of new traffic for each 
session is modeled as a Poisson process with rate y (packets/second). Let nu. be 
the total number of sessions for 0-D pair w. Then, the arrival of new traffic to 
the network is a Poisson process with rate r = Xll. n,,.y. For 0-D pair w, the 
traffic for a particular session is transmitted over one path in the set P,q . ,  a given 
set of simple directed paths from the origin to the destination of 0-D pair w. 
Let P be the set of all simple directed paths in the network. For each link I E L, 
the capacity is Cl packets/second. 

For each 0-D pair w E W, let xp be the number of sessions assigned to path 
p E P,, . For each path p and link I E L, let tip/ denote an indicator function that 
is one if link 1 is on path p and zero otherwise. Then, the aggregate flow of 
packets over link I is given by the left-hand side of (I) .  

In the network, there is a buffer for each outbound link. Using Kleinrock’s 
independence assumption [ 151, the arrival of packets to each buffer is a Poisson 
process where the rate is the aggregate flow over the outbound link. It is 
assumed that the transmission time for each packet is exponentially distributed 
with mean C ; ’ .  Thus, each buffer can be modeled as an M/M/I queue. 

The problem of determining a path for each session to minimize the average 
delay is formulated below as a nonlinear combinatoriai optimization problem: 

subject to 

c c xpyGp, 5 c/ v I E L 
I V E  w PEP,,. 
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x,, = nonnegative integer V p E P,, . ,  M' E W .  (3) 

The objective function represents the average packet delay in the network. 
Constraint ( I )  requires that the aggregate flow not exceed the capacity for each 
link. Note that this constraint should be written as a strict inequality and ( I )  is a 
relaxation. Using this relaxation results in an equivalent problem since the 
objective function serves as a barrier function that restricts the aggregate link 
flow to be less than the link capacity. Constraint (2) ensures that for each O-D 
pair all the sessions are serviced. Constraint (3) requires that the number of 
sessions assigned to a path be a nonnegative integer. 

In the above formulation, sessions for an O-D pair may be established over 
several different paths. We refer to this as multiple-path routing. In [9] and [16], 
all the traffic for an O-D pair is routed over a single path. We refer to this type 
of routing assignment as single-path routing. It can be shown that (17) with the 
additional constraint 

x,, = 0 or n!,. V p E P,, . ,  MJ E W 

is equivalent to the single-path routing formulation given in [9] and [16]. This 
additional constraint requires that for each O-D pair M', a path p E P,,. carries 
either none or all of the traffic for O-D pair MI. Let be the optimal 
objective function value for the single-path routing problem. Note that the set 
of feasible solutions for single-path routing is a proper subset of the set of 
feasible solutions for multiple-path routing. From this observation, ZF 5 ZIpsP. 

A variation on the above formulation is PI!,  to be the set of all simple paths for 
O-D pair M'. By doing so, the set of feasible solutions would be enlarged and 
thus the minimal achievable average delay would be smaller. The solution 
procedure described in Section 4 can be easily modified to handle this change in 
the formulation. However, in our computational experiments, we found that 
this change in implementation resulted in a reduction of the minimal average 
delay of less than 5% while the computation time increased by 50-100% com- 
pared with the implementation where [P ,$ , [  is at most 3. 

An equivalent formulation of the above problem is given by ( I P )  below. Let 
{x;} be a feasible solution to Problem (e). As a result, (IF) can be rewritten in 
the following form: 

subject to 
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O S f i ‘ C ,  V I E L  ( 5 )  

C (x; + A,,) = n,,. v E w 
PEP,,. 

x; + Ap 2 0 V p  E P,, . ,  w E W (7) 

Ap = integer V p E P,, . ,  w E W .  (8) 

Since r is a constant, it can be eliminated from the objective function. For each 
link I, a variablefi is introduced. We interpret these variables to be “estimates” 
of the aggregate flows. Since the objective function is strictly increasing withf, 
and ( I P )  is a minimization problem, each5 will equal the aggregate flow in an 
optimal solution. In the Lagrangean relaxation, the introduction of {fi} has the 
effect of decoupling the problem into two separate subproblems. In ( I P ) ,  {x;} is 
the current routing assignment and is fixed. {A,,} represents the change from the 
current routing assignment. The set of feasible routing assignments of ( I P ) ,  {x: 
+ A,,}, is the same as the set of feasible assignments for (p). Thus, ( I P )  is 
equivalent to (IT). In the next section it will be shown that the introduction of 
{A,,} facilitates the development of an iterative scheme to find near-optimal 
multiple-path routing assignments. 

At each iteration k ,  2 I ,  we solve the following “restricted” problem: 

fi 
ZRp = minx  - 

IEL G - A’ 

subject to 

(RP) 

C + A ~ )  = n ,  v w E w 
PEP. 

where { , $ - I }  is the routing decision obtained by solving ( R P )  at the (kl - I)th 
iteration. It should thus be noted that { X ~ I - ’ }  is fixed in the course of solving 
( R P )  and the decision variables are {Ap,fi}. The last constraint in ( R P )  restricts 
the change of traffic on a particular candidate route not to exceed one session at 
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each iteration. The motivation for choosing to solve (ZP) by solving a sequence 
of (RP)’s  is that better routing decisions may be found especially for a heavily 
loaded or unbalanced network where the bifurcation of traffic is needed. The 
introduction of {A,,} permits the splitting of sessions for each 0-D pair. In 
contrast, the solution of the Lagrangean relaxation in [9] and [ 161 results in all 
of the sessions for a particular 0-D pair to be assigned to the same path. 

3. LAGRANGEAN RELAXATION AND DUAL PROBLEM 

In this section, Lagrangean relaxation is applied to solve (RP). As in [9] and 
[ 161, we dualize constraints (9) to obtain the following relaxation: 

subject to 

Ap 2 0 x k l - l  + Q p E PI,., w E W (16) 

Ap = 0, 1, - I V p  E PI, . ,  HI E W. (17) 

P 

Note that (RPLR) is composed of the following two independent subproblems: 

Subproblem 1 : 

subject to 

and 

Subproblem 2: 
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subject to 

+ A p 2 0  V p E  P , , ,  w E W (20) 

A, = 0, I ,  or - 1 V p  E P,, ,  w E W .  (21) 

Subproblem 1 is composed of JLI (one for each link) simple problems. Each 
of these simple problems is the minimization of a convex univariate function 
over a simple interval. For each link 1 E L, the solution is 

Subproblem 2 consists of I WI (one for each O-D pair) independent problems. 
For O-D pair w ,  the subproblem involves rearranging the distribution of the n,,. 
sessions among the candidate route set P,,, under the constraint that the change 
in the number of sessions on each path may not exceed one. Define the cost of 
path p to be &,, u I ,  where h, represents the set of the links on path p .  A 
solution to this problem is the following. For each O-D pair w ,  find a pair of 
paths that has the largest difference in cost. Then, shift one session from the 
more expensive path to the other so that the nonnegativity constraint (20) and 
the session-exchange constraint (21) are not violated. This procedure is re- 
peated until no more such pair of paths can be found. However, a more system- 
atic way to solve subproblem 2 is presented below. For each O-D pair w ,  sort 
the candidate routes in increasing order according to the path costs. If the 
number of sessions on the most expensive path is positive, shift one session to 
the least expensive path; otherwise, check the second most expensive path. 
Delete those paths that have been checked or have had traffic changes from the 
path set and repeat this procedure until the path set becomes empty. 

Other forms of constraint (17) may be used. For example, constraint (17) can 
be replaced by 

A p = - l , 0 , 1 , 2  , . . .  V w € W , p E P , , , .  (23) 

Then, the solution to each of the I WI subproblems is simply to shift one session 
from every path that carries at least one session to the shortest path and, 
therefore, we only need to keep track of those paths with nonzero flow but not 
all of the possible paths as in the above algorithm. The choice of constraint (17) 
should be such that (i) the resulting subproblem should be easy to solve and (ii) 
the number of sessions that are rerouted be limited in each iteration. 

Our approach in solving ( I P )  is to solve a sequence of (RP) ' s  where (17) is 
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used to limit the rerouting of sessions in each iteration. The motivation for this 
approach can be appreciated by considering the solution of (ZP) directly as in 
[9] and [16]. Consider the problem ( I P )  after dualizing constraint (4). Then, 
subproblem 2 of this Lagrangean relaxation problem is a shortest-path problem 
and the solution is to route ufl of the sessions for each O-D pair over the 
shortest path (whenever it is unique). In other words, the solution is a single- 
path routing solution. In contrast, our approach results in multiple-path solu- 
tions. Another motivation for solving a sequence of (RP)’s  is to assure that the 
multipliers change gradually. 

We then solve the dual problem: 

and use the solution to subproblem 2 as a heuristic routing decision. Note that 
the solution to (RPLR) is a lower bound on ZRp , but may not be a lower bound 
on Z I P .  A lower bound on ZIP is obtained by solving (ZPLR). Note that subprob- 
lem 1 of (ZPLR) is the same as subproblem I of (RPLR) and subproblem 2 of 
(ZPLR) is I WI shortest-path problems. Thus, the computation of a lower bound 
is essentially a byproduct of solving (D). 

There are several methods for solving the dual problem (D). For example, 
we may apply the subgradient optimization procedure [9, 131 or the multiplier 
adjustment procedure [16]. In  Section 4, the overall algorithm for solving the 
virtual circuit routing problem is presented. 

4. A SOLUTION PROCEDURE 

The overall routing algorithm consists of solving a sequence of restricted 
problems (RP) ’ s .  k l  is the iteration counter for the number of ( R P ) ’ s  solved. 
The algorithm stops when the best heuristic solution is within a specified toler- 
ance of an optimal solution or the number of restricted problems solved is K I  . 
For each (RP), (RPLR) is solved (step I )  and the multipliers are adjusted (step 
2) K2 times. kz is the iteration counter for the number of times (RPLR) has been 
solved and the number of times the multipliers have been adjusted. In step 2.a, 
we employed the multiplier adjustment procedure developed in [ 161 rather than 
the commonly used subgradient method. In [ 161, it was shown that this multi- 
plier adjustment procedure is very effective and efficient and better suited for 
distributed computation. The control sequence in the multiplier adjustment 
procedure was chosen to be k = (k ,  - I ) &  + kz .  

Let gf denote the aggregate flow on link I resulting from the solution of 
subproblem 2 of (RPLR) at the kth iteration. Then, an upper bound on ZlP is 
determined by 
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Let UE and L E  be the smallest upper bound and the largest lower bound 
obtained so far, respectively. Then, (UE - L E ) / L E  is an upper bound on how 
far the best heuristic solution is from an optimal solution. Let E be a prespeci- 
fied upper bound on (UE - L E ) / L E .  The overall routing algorithm is given 
below: 

0. Initialize 
0.a Find an initial primal feasible solution {x;}. 
0.b Find an initial dual feasible solution {u;?. 
0.c Set k l  and k? to I .  

1. Solve (RPLR) 
1.a k +- ( k l  - l )Kr  + k2. 
1.b xk + .:-I. 

I .c For each link I, calculate f: by using (22). 
1.d Solve subproblem 2 for each O-D pair. 
1.e For each link I, calculate g:. 
1.f Update U B  and LB.  

2 .  Adjust the multipliers 
kf: + 

V I E L .  j -1  - ( k  + I)C, 2.a u:+l t c;' 
2.b kz + kz + 1.  

kl + kl + 1. 
2.c If kz  5 K 2 ,  go to step I .  Otherwise, xh +- (xh + A,,). kz + I ,  and 

2.d If (UE - L B ) / L B  < E ,  stop. If k l  5 K I  , go to step 1. Otherwise, stop. 

In the initialization step, we need to find an initial primal feasible solution {x:} 
and an initial dual feasible solution {u) ' } .  A number of methods can be used to 
determine {x:}. The K(0)-ordering heuristic [5]  or the single-path routing 
method [9, 161 may be used. The method we used was to relax the integer 
constraints of ( I P ) .  The resulting relaxed problem is the datagram routing 
problem that can be solved by a number of convex programming techniques. 
For simplicity, we used the Frank-Wolfe method. Then, we used a round-off 
procedure to transform the continuous solution to the relaxed problem to find 
an initial primal feasible integer solution. The round-off scheme that we used is 
as follows: For each O-D pair, the paths are ordered according to the fractional 
part of the number of sessions assigned in the continuous solution. Then, the 
paths with larger fractional parts are rounded up and the paths with smaller 
fractional parts are rounded down. More precisely, the sum (an integer) of the 
fractional parts is computed and distributed to those paths with larger fractional 
parts. 

To illustrate the round-off procedure, consider the following example for an 
O-D pair with three candidate paths. Suppose in the continuous solution that 
the number of sessions assigned to each of these paths is 4.8, 3.7, and 0.5, 
respectively. The fractional parts are 0.8, 0.7, and 0.5. Then, after applying the 
round-off procedure, the number of sessions assigned to these paths are 5, 4, 
and 0, respectively. 
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To find a good set of initial multipliers {xp}, we apply a theorem from La- 
grangean duality. This result states that if the primal problem is a convex 
programming problem then the optimal dual variables for the Lagrangean dual 
problem are precisely the Lagrangean multipliers in the Kuhn-Tucker condi- 
tions [I]. 

Consider a variation of (IP) with the decision variables x,, = x: + A,,. Con- 
sider this problem where the integrality constraints are relaxed. The resulting 
problem is the datagram routing problem that we will call ( P ) .  We next show 
that the Lagrangean duals of (P) and (IP) are equivalent. 

A Lagrangean relaxation of (IP) is 

subject to 

x,, = integer V p E P,, w E W. (27) 

Let (PLR) be the Lagrangean relaxation of ( P )  where the flow constraints are 
dualized. Let ZD,p(u) and ZDp(u)  be the optimal objective function values for 
(IPLR) and (PLR), respectively. Let (DIP) and (DP) denote the respective 
dual problems of maximizing ZD,,(u) and ZDp(u)  over u 2 0. Then, 

Lemma 1. 

(i) ZDlP(u)  = ZDp(u)  for all u 2 0. 
(ii) (DP)  and (DIP) are equivalent problems. 

Proof, Note that the only difference between (IPLR) and (PLR) is the integer 
constraints on {x,}. As in (RPLR), both (IPLR) and (PLR) consist of two 
subproblems. In (RPLR), (IPLR), and (PLR) ,  the first subproblem is exactly 
the same. The optimal solution to the second subproblem for both (IPLR) and 
(PLR) is to assign n ,  sessions to a shortest path. This shows that ZDlp(u) = 

ZDp(u)  for any u. 

To clarify the proof of Lemma 1, a few remarks are needed. First, there may 
be alternative shortest paths in the second subproblem so that the optimal 
assignment of sessions to paths may not be unique. However, the optimal 
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objective function value of subproblem 2 is unique. Second, by writing con- 
straint (25) in the form Ax = 6 ,  A is unimodular. This implies that every 
extreme point of Ax = b is integer so that the integrality constraints in (IPLR) 
are redundant. 

The following result is proven in Appendix 1. 

Lemma 2. A set of multipliers that satisfies the Kuhn-Tucker conditions for ( P )  
is given by 

where {f;3 is an optimal flow for link 1. 

respectively. The following result is now almost immediate. 
Let Z,, and Z p  denote the optimal objective function values of (P) and ( P ) ,  

Theorem 1. 

(i) Z D l p  = Z D p  = z p  5 z / p .  

(ii) The Lagrangean dual problem ( D I P )  is solved exactly by (28). 

Proof. 
(i) By Lemma 1,  z D , p  = ZDp. Since ( P )  is a convex programming problem, 

Z D p  = Zp by the strong Lagrangean duality theorem. By the weak Lagran- 
gean duality theorem, Z D l p  5 ZIP. 

(ii) Since (P) is a convex programming problem, the multipliers given in (28) 
are optimal dual variables for ( D P ) .  Since ( D P )  and (DIP)  are equivalent 
problems (Lemma I ) ,  the multipliers given in (28) are optimal dual vari- 
ables for (DIP).  

The significance of the above results is twofold. First, it was shown that the 
Lagrangean dual problem can be solved exactly by solving a convex program- 
ming problem (the datagram routing problem). Finding an exact solution to the 
Lagrangean dual problem of combinatorial optimization problems occurs rarely 
in the literature. Second, from Theorem I ,  we would expect the lower bounds 
to be tight. This did indeed occur in our computational experiments where the 
difference between the best heuristic solution and the best lower bound was 
less than I %  for problems with 9,000 integer variables. 

5. COMPUTATIONAL RESULTS AND DISCUSSION 

The routing algorithm for virtual circuit networks described in Section 4 was 
coded in FORTRAN 77 and run on a SUN 41260 workstation. One of the 
objectives in the computational experiments was to compare the quality of the 
solutions of the single-path and multiple-path routing assignments. To  fairly 
compare the two solutions, the same number of iterations were used for both 
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7 
FIG. 1. 61-node 148-link ARPA net. 

schemes. To do this, only the iteration counters were considered in the termi- 
nation criterion ( E  was set to zero). In addition, in the experiments in [16], the 
accuracy of the single-path routing scheme (and therefore also multiple-path 
routing) was extremely high. The maximum number of restricted problems 
solved was K I  = 30. For each restricted problems, the number of multiplier 
adjustments was K 2  = 10. Thus, the total number of iterations in terms of the 
number of times that (RPLR) was solved was 300. The control parameter rn in 
the multiplier adjustment procedure was chosen to be ( k ,  - I)K7 + k? + 1.  

An initial primal feasible solution was determined by (i) applying the Frank- 
Wolfe method for 20 iterations to the datagram routing problem and (ii) then 
using the round-off scheme described earlier. The method for determining an 
initial feasible flow is given in Appendix 11. The initial set of multipliers was 
determined by Eq. (28) where the link flows correspond to the optimal routing 
assignments for the datagram routing problem. This initial set of multipliers 
was used as the initial feasible solution for the dual problem of the first ( R P ) .  In  
each iteration, the last set of multipliers found was used as the initial set of 
multipliers for the next dual problem. In the experiments, the last primal feasi- 
ble solution found for the current (RP) was used as the initial primal solution to 
the next (RP) .  This could be modified by using the best primal feasible solution 
found instead of the last one. By best primal feasible solution, we mean the best 
heuristic solution of the 10 obtained by solving the 10 (RPLR)’s  associated with 
the current ( R P ) .  However, the experiments show that this variation does not 
result in better solutions. 

The algorithm was tested on three networks: ARPA, RING, and OCT with 
61, 32, and 26 nodes, respectively. Their topologies are shown in Figures 1-3. 
All the link capacities were assumed to be 150 Mbps and the mean packet 
length was assumed to be 500 bits. For each 0-D pair, the number of sessions 
was generated from rounding-down the value generated from a uniform distri- 
bution. The third column of Table I gives the ranges of the uniform distribu- 
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FIG. 2. 32-node 120-link RING net. 

tions. The average packet arrival rate for each session is given in the fourth 
column. For each O-D pair, there were at most three candidate paths. Each 
candidate path was chosen as a shortest path with respect to a set of randomly 
generated arc weights. 

The implementation of the multiple-path routing algorithm could be modified 
to consider all simple paths for each O-D pair. By replacing the session- 
exchange constraint (13) with ( 2 3 ) ,  sessions would be shifted from expensive 
paths to a shortest path. In this variation, all possible simple paths are implic- 
itly considered. This variation would likely result in better heuristic solutions. 
However, from the results reported in [91, the minimal average packet delay 
remains about the same when IP,,,I is three or more. In our early computational 
experiments, we tested an implementation where all simple paths were consid- 
ered. This implementation resulted in a reduction of the minimal average delay 
of less than 5% while the computation time increased by 50-100% compared 
with the implementation where JP,,.J is at most 3. 

Table I summarizes the results of our computational experiments on the 
performance of the multiple-path routing scheme. The fifth column is the larg- 

FIG. 3. 26-node 60-link OCT net. 
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est lower bound on the optimal objective function value found in 300 iterations. 
The sixth column gives the objective function value, denoted by Z M p R ,  for the 
best primal feasible solution found in 300 iterations. The seventh column gives 
an upper bound [(upper-bound - lower-bound) . 100/lower-bound] on the per- 
centage difference between the best feasible solution found and an optimal 
solution. 

The eighth column gives the maximum link utilization factor in the final 
solution. The ninth column provides the percentage of session groups that are 
routed through multiple paths, where a session group refers to those sessions 
with the same 0-D pair. This value is referred to as the degree of session 
bifurcation. The tenth column shows the CPU time, which consists of the time 
to compute a solution and the time used to input the problem parameters. 

From an inspection of Table I, it is clear that the routing algorithm is efficient 
and very effective in finding near-optimal solutions. For every test problem 
(networks with up to 61 nodes), the routing algorithm determines a solution that 
is within 1% of an optimal solution in minutes of CPU time on a SUN 4/260 
workstation. Also, our routing algorithm worked well for heavily loaded net- 
works. Another observation is that the degree of session bifurcation is small for 
a large network (cases 1-4). Another observation that is not shown in Table 1 is 
that the initial solutions have little effect on the final solutions. The initial 
solutions obtained by using minimum hop paths for each session are almost as 
effective as those obtained by applying the Frank-Wolfe method and the 
round-off scheme. This property suggests a way to reduce the complexity and 
computation time of our algorithm. Another result that is also not reported in 
Table I is that if the link capacities are increased or the basic traffic requirement 
unit (the traffic rate of each session) is decreased the performance of the round- 
off heuristic improves. 

A comparison of multiple-path routing, single-path routing, the round-off 
Frank-Wolfe heuristic, and the K(0)-ordering heuristic methods is reported in 
Table 11. The third column presents the value of ZsfR, the best average packet 
delay found in 300 iterations by using single-path routing. The fourth column 
shows the percentage difference between ZspR and ZMfR. The fifth column 
gives the value of ZRo,  the average packet delay obtained by using the round- 
off Frank-Wolfe heuristic. The sixth column shows the percentage difference 
between ZRo and ZMpR. The seventh column gives the value of ZKo,  the average 
packet delay obtained by using the K(0)-ordering heuristic. The eighth column 
shows the percentage difference between ZKo and Z M f R .  

An observation from Table I1 is that the multiple-path routing scheme pro- 
vides a lower average packet delay than do all the other schemes compared. 
For many cases, there is significant difference in the performance. For exam- 
ple, in case 13, the single-path routing method found a solution that is 57.18% 
worse, the round-off Frank-Wolfe heuristic determined a solution that is 
24.53% worse, and the K(0)-ordering heuristic failed to obtain a feasible solu- 
tion. It should be noted that in single-path routing and the K(0)-ordering heuris- 
tics all the sessions for each 0-D pair are routed over the same path. In 
contrast, the solutions obtained by the Frank-Wolfe heuristic or the multiple- 
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path routing method may result in the splitting of the sessions for an 0-D pair 
over a number of different paths. Case 13 accentuates the importance of split- 
ting sessions when there is heavy traffic. Another observation is that for a large 
network, e.g., the ARPANET, our routing algorithm performs only marginally 
better than does the single-path routing scheme and the round-off Frank-Wolfe 
heuristic. 

In the next set of experiments, we investigated the effect of changing the link 
capacities on the performance of the K(0)-ordering heuristic 151, the rounded- 
off optimal continuous solution, the single-path routing scheme, and the 
multiple-path routing scheme. In all the test problems, the traffic rate of each 
session was the same. For each of the three topologies (ARPA, OCT, and 
RING) considered, the load on the network was kept constant. For example, in 
the first test problem for ARPA, all the link capacities were 50 Kbps and the 
number of sessions for each 0-D pair was generated from some pmf. In the 
second test problem, the link capacities and the number of sessions for each 0- 
D pair in the first problem were multiplied by some integer factor. In each of the 
subsequent test problems, the capacities and number of sessions were multi- 
plied by other integer factors. Thus, the loading of the network (total traffic 
relative to the network capacity) was kept constant. The objective function 
used was the average number of packets in the network. Figures 4-6 provide 
the best objective function value found by each of the four methods for the 
ARPA, RING, and OCT networks, respectively. In addition, the best lower 
bound found for the optimal objective function value is also shown in the 
figures. 
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From these figures, the performance of the rounded-off optimal continuous 
solution and the multiple-path routing scheme improve as the link capacity 
increases. Another observation is that the best objective function values found 
for the K(0)-ordering and single-path routing heuristics are invariant with in- 
creases in the capacities. This observation from our computational experiments 
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can be proven to be generally true. The proofs of the following results are given 
in Appendix 111. 

Proposition 1. If the number of sessions and the link capacities are changed by 
the same factor, then ZK(0) remains the same. 

Proposition 2. If the number of sessions and the link capacities are changed by 
the same factor, then ZspR will remain the same when the initialization proce- 
dure described in Section 4 is used. This result holds whenever the subgradient 
method or the multiplier adjustment procedure is used. 

Other results are (i) ZMpR 5 ZRo and (ii) ZspR I ZK(0). These relationships are 
true since initial feasible solutions for the multiple-path routing method and the 
single-path routing method are the rounded-off continuous solution and the 
K(0)-ordering heuristics, respectively. The performance of each of the four 
methods for the objective of minimizing the average delay can easily be ob- 
tained from Figures 4-6 by dividing each point by the total input rate. Recall 
that the capacities and the total input rate are multiplied by the same factor. 
Thus, as the capacities are increased, the decrease in the average delay is more 
dramatic than is the decrease in the average number of packets in the network. 

6. SUMMARY AND CONCLUSIONS 

In this article, a multiple-path routing algorithm has been proposed for virtual 
circuit networks with multiple sessions for each 0-D pair. In contrast to the 
single-path routing algorithm [9, 161, the sessions of an 0 - D  pair in a multiple- 
path routing scheme may be routed through different paths. The problem was 
formulated as a nonlinear combinatorial optimization problem. To solve this 
problem, we developed an iterative scheme where at each iteration we solved a 
restricted problem. For each of the restricted problems, the number of sessions 
shifted from one path to another is limited. The idea was to prevent the algo- 
rithm from finding single-path routing assignments. Another motivation for 
doing this is to assure that the multipliers change gradually. We then applied 
Lagrangean relaxation and the multiplier adjustment procedure [ 161 to solve 
each restricted problem. 

In the computational experiments, our algorithm was shown to be very effec- 
tive and efficient in finding near-optimal solutions. Our algorithm determines 
solutions that are within I% of an optimal solution in minutes of CPU time for 
networks with 26-61 nodes. 

Our algorithm is also compared with the round-off Frank-Wolfe method, the 
single-path routing scheme, and the K(0)-ordering heuristic. Both theoretical 
and computational results show that the multiple-path routing scheme is better 
than the others. We also found that when the network load is high or unbal- 
anced, the single-path routing algorithm and the K(0)-ordering may perform far 
worse than the multiple-path routing algorithm. In addition, we found that 
when the ratio of session rate and link capacity becomes very small the round- 
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off Frank-Wolfe method performs almost as well as does the multiple-path 
routing scheme. 

Since a distributed algorithm is more desirable than is a centralized one due 
to higher reliability, a continuation of this work would be to develop a distrib- 
uted version of the multiple-path routing algorithm. Our formulation can be 
generalized to include priority traffic and input rate flow controls. 

APPENDIX I 

In this appendix, we prove that the multipliers given by (28) satisfies the 
Kuhn-Tucker conditions for (P). Let {uI}, { u ~ } ,  {s,,.}, and { f , }  be the multipliers 
associated with constraints (4)-(7). Note thatfi < C/ in any optimal solution due 
to the implicit barrier function in the objective function. Thus, the right-hand 
inequality in (5) can be ignored. 

Proof of Lemma 2. The Kuhn-Tucker conditions for ( P )  are 

u / f i = o  V l E L  (32) 

f p ( x ;  + A,) = 0 V p  E P,,., w E W (33) 

u / r o  V I E L  (34) 

u / r o  V l E L  (35) 

We now show that there exists a set of multipliers {u / ,  UI, s,,., f , } ,  where u~ = 
CI/[(CI - fi)’], that satisfies the Kuhn-Tucker conditions. In every optimal 
solution, Z,,.EW ZpEP, (x; + Ap)yBpl = fi, V I E L, so (31) is always satisfied. 
Consider any arbitrary path p.  There are two cases to consider: (i) Suppose X: 

+ A,, > 0. Then,fi > 0 for every link I on path p. Then, the complementary 
slackness condition (32) implies u/ = 0. Then, from (29), UI  = C// [ (C/  - fi)’]. (ii) 
Suppose x; + A, = 0. There are two subcases to consider: (a) Consider any link 
I on path p wherefi > 0 (due to other path flows). Then, from case (i), uI = CI/ 
[(C, -A)*] .  (b) Consider any link I on path p wherefi = 0. We now show that we 
can choose UI = 0 and UI = C/ / [ (C /  -A)’] and find corresponding {s,,.} and { f , }  that 
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satisfy the above conditions. To satisfy (33) and (36), t,, can be any nonnegative 
number. Interpret uI as arc weights. Let s,,. = minpEp,, y &I,,, u/ (the length of a 
shortest path). Then, t,, can be chosen to be y&,,, u~ - minPEp,, y &,,, u / .  

APPENDIX II 

In this appendix, the technique for finding an initial feasible solution to ( I P )  
where the integer constraints are relaxed is summarized. This method is given 
in [4]. The idea is to relax the capacity constraints and to replace the original 
objective function D ( g )  with an approximate function d(g). The approximate 
function is convex and continuously differentiable. It is defined for all nonnega- 
tive flows and has a high penalty whenever any capacity constraint is violated. 

The approximate function used is 

where 

if g/ 5 ( I  - a)C/ ,  g/ 
c/ - s/ 
I - ff g, - ( I  - a)C, + otherwise a ff'C/ 

D / ( g / )  = 

and (0 < a e I ) .  In Figure 7, the relationship between the original function and 
the approximate function is illustrated. 

12, 1 
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FIG. 7. The approximate function. 
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APPENDIX 111 

In this appendix, we prove Propositions I and 2. Let I denote the original 
problem instance with capacities {C,) and number of sessions {n,,.}. Let I ,  denote 
the problem instance where each CI and n,,. are multiplied by a. Let ZK(0)va be the 
objective function value found by the K(0)-ordering heuristic for I,. Before 
reading the proof of Proposition 1, the reader may want to review the K(0)-  
ordering heuristic in [5 ] .  

Proof ofPropos i t ion  1 .  The proof is by induction. We first show that the 
objective function values in the initial solutions of I and 1, are the same. The 
initial solution is determined by assigning the traffic for each 0-D pair to a 
shortest path where the arc weights are {C;'}  for I and {(aC$'} for 1,. Since 
the arcs weights for the two problem instances differ by the same scale factor, 
the shortest path chosen for each 0-D pair in both problems are identical. 
Here, we assume that the same shortest path algorithm is used on both prob- 
lems so that ties are broken in the same way. Consequently, the aggregate flows 
in the two problems will differ by the same scale factor, i.e., g / ( a )  = ag/. 
Then, 21 (ag:)/[(aC/ - ag))] = 2/ (g:)/[(Cl - g:)], showing that the objective 
function values are the same in the two problems. In addition, the ordering of 
the 0-D pairs is the same for each problem instance. 

Assume that at iteration k, g f ( a )  = a g f .  Thus, ZI (agf)l[(aC, - a g f ) ]  = ZI 
(gf)/[(C, - g f ) ] .  Then, at iteration k + 1, the sets of arc weights for the two 
problems are {(aCr)/(aCl - ag/S2} and {CI/(Cl - g f ) 2 } .  Since the corresponding 
arc weights in the two problems differ by the same factor, the assignment of 
routes for each 0-D in both problems will be the same in iteration (k + 1). 
Consequently, g f + ' ( a )  = agf+' and Xl(agf+I)/(aCI - agf+') = X I  (gf+')/(CI - 
gf+'). 

Let (ZPSP) be the single-path routing problem. Let ZDpp(u) and ZDpSp,,(U) 

denote the optimal objective function value of the Lagrangean relaxation of 
(ZP) and the objective function of (DZPSP) for problems Z and I , ,  respectively. 
Note that the vector of multipliers for Z, is u. 

Proof of Proposition 2 .  We prove by induction that uk = uk/a for all k.  It then 
follows that gf (a)  = agf , resulting in the same objective function value for both 
problem instances. We first show the basis of the induction. The initial set of 
aggregate flows for the two problem instance, gp and gp(a), are determined by 
the K(0)-ordering heuristic. Then, gp(a) = agf. From Eq. (28), up = up/a. 

Assume that at iteration k, d = uJ/a for j  = 1, . . . , k. Then, the estimate of 
the flows for Z, at iteration k + 1 is given by 

whereff represents the estimate flow on link 1. In the algorithm, the multipliers 
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may be updated by (i) the multiplier adjustment procedure or (ii) the subgra- 
dient method. These two cases are considered. 

Case (i)-Multiplier Adjustment Procedure 
From Eq. (37) and step 2.a in the algorithm of Section 4, 

Case @)-The Subgadient Method 
The update rule in the subgradient method is 

where y"(a) is a subgradient of ZDIPSP.~(U) at iteration k .  The step size t"(a) is 
determined by 

where Zh.spR is the best objective function value found in the first k iterations 
and 6 is a constant, 0 < 6 I 2. Since uj = u J / a  for iterations j = 1, . . . , k ,  

= agf and Zh.spR are the same for both problem instances. 
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