ORSA Journal on Computing
Vol. 4, No. 3, Summer 1992

0899-1499 /92 /0403-0250 $01.25
© 1992 Operations Research Society of America

A New Multiplier Adjustment Procedure for the
Distributed Computation of Routing Assignments in
Virtual Circuit Data Networks

FRANK Y. S. LIN / Bellcore, 3 Corporate Place, PYA2]318, Piscataway, NJ 08854, lin1@ moscow.cc.bellcore.com

JAMES R. YEE / Department of Electrical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822,
jyee@uwiiliki.eng hawaii.edu

(Received: November 1990; final revision received: April 1991; accepted: October 1991)

in this paper, the routing problem in virtual circuit networks is congidered. In
virtual circult networks, all of the packets in a session are iransmitted over
exactly one path estabiished betwsen the origin and the destination. We consider
the problem of choosing a path for each origin-destination pair so as to minimize
the average number of packets in the network. We consider the formulation of
this problem as a nonlinear muiticommodity flow problem with integer decision
variables.The emphasis of this work is to develop a distributed algorithm to
solve this optimization problem. The hasic approach is Lagrangean Relaxation.
We introduce a new muitiplier update rule which tacilitates the solution of the
nonlinear integer programming problem using distributed computation. In compu-
tational experiments, our proposed distributed algorithm determines sokitions
that are within 1% of an optimal solution in less than 2 mimites of CPU time for
networks with 26 to 81 nodes. In addition, the proposed muttiplier adjustment
procedure provides better hounds and is less sensitive to the algorithm
parameters than the subgradient method. An analysis of the communication
delays of the control messages needed to support a distributed implementation
is given.

computer communications networks play an important
role in satisfying our communication and computational
needs. The applications of computer communications net-
works include electronic mail, telephone networks, cellular
phone systems, airline reservation systems, automated teller
machines, tactical military C> systems, etc.. In order for a
computer network to operate efficiently and reliably, it is
essential that the routing algorithm be carefully designed.
For this reason, the routing problem has been studied
intensively.?”- 21

An overwhelming majority of the research literature on
routing assumes datagram service. Two primary reasons
for this are (i) the ARPANET?? which is a datagram
network, inspired a large amount of the research and (ii)
the routing problem in datagram networks can be solved
by utilizing many standard convex programming tech-
niques!"” 3 In datagram networks, the packets sent for a
particular user pair may be routed over different paths so
that the decision variables are continuous variables. In
contrast, all of the packets for a particular user pair in
virtual circuit networks are transmitted over exactly one
path. Consequently, the routing problem in virtual circuit
networks is a combinatorial optimization problem which is

a more difficult problem. Many networks of today (e.g.,
SNA,'> 18 TYMNET,?* *! TELENET!! and
TRANSPACE) are virtual circuit networks. Furthermore,
networks of the future such as ISDN will provide virtual
circuit service.!!! A major advantage of virtual circuit ser-
vice over datagram service is that all packets in a particular
session arrive in the same order in which they are sent. In
datagram networks, packets for a user pair usually arrive
out of order. For these reasons, we focus on virtual circuit
networks in this paper.

A centralized routing algorithm is one where all of the
computations are performed at one central node. A dis-
tributed routing algorithm is one where all of the nodes in
a coordinated fashion collectively solve a common opti-
mization problem. For determining routing assignments
during the operation of a network, a distributed algorithm
has many advantages over a centralized algorithm. First, a
distributed algorithm is more reliable. The failure of the
central node when using a centralized algorithm causes the
entire network to become dysfunctional. The failure of a
node when using a distributed algorithm only causes the
failure of a small portion of the network. Second, the use of
a centralized algorithm requires the transmission of more
control messages. This is due to the transmission of mes-
sages describing the network status of each node to the
central node and the transmission of the routing assign-
ments from the central node to each of the other nodes. In a
distributed algorithm, control messages (which implicitly
describe the network status many hops away) are transmit-
ted between neighbors. There are other advantages, but the
first one is sufficient for many researchers to argue that a
distributed algorithm is essential for use in an operational
network. In this paper, we will consider only distributed
algorithms.

Although virtual circuit networks are common, the num-
ber of papers on routing in virtual circuit networks is small
relative to the number of papers on routing in datagram
networks. Segall®! formulated the routing problem in vir-
tual circuit networks as a convex programming problem
and extended Gallager’s algorithm® to develop a dis-

Subject classifications: Communications: virtual circuit data networks, routing, distributed computation. Networks/graphs: multicommodity flows.

Copyright © 2001 All Rights-Resered

Multiplier Adjustment Procedure

tributed routing algorithm. Courtois and Semal®® modified
Fratta, Gerla and Kleinrock’s Flow Deviation method®! to
develop a heuristic routing algorithm for virtual circuit
networks. The Flow Deviation method is the Frank-Wolfe
method specially tailored to solve an uncapacitated multi-
commodity flow problem with a convex objective function.
They obtained solutions that are within 3% (on the aver-
age) of the optimal solutions for lightly loaded networks.
Gavish and Hantler® first formulated the problem of opti-
mal route selection in virtual circuit networks to minimize
average delay as a nonlinear multicommodity flow prob-
lem with 0-1 decision variables. They applied Lagrangean
Relaxation and the subgradient optimization method to
develop a centralized algorithm. Their computational re-
sults showed that this algorithm is effective in finding good
feasible solutions and determining tight lower bounds on
the minimal expected delay. Narasimhan, Pirkul and Def24
reformulated the problem considered in [8). Their formula-
tion facilitated a new Lagrangean relaxation which resulted
in tighter bounds.

In solving the dual problem, Gavish and Hantler®®! used
the standard update rulel'”! for the dual variables. A dis-
tributed implementation of this multiplier update rule
would result in more overhead messages than desired. The
main contribution of this paper is to introduce a new
multiplier adjustment procedure which requires far fewer
overhead messages in a distributed implementation. In
addition, the distributed routing algorithm with our multi-
plier update rule is less sensitive to the algorithm parame-
ters and finds slightly better lower bounds on the optimal
solution than the usual multiplier update rule for most of
the computational experiments.

The remainder of this paper is organized as follows. A
formulation of the routing problem as a nonlinear combina-
torial optimization problem is presented in Section 1. In
Section 2, a Lagrangean Relaxation approach to the prob-
lem is presented. In Section 3, we introduce a distributed
multiplier adjustment procedure. Computational results are
reported in Section 4. In Section 5, we analyze the perfor-
mance of the distributed routing algorithm and discuss
several implementation issues.

1. Problem Formulation

Basically the formulation presented in [8] is adopted in this
paper. A brief review of the formulation is given below. A
virtual circuit communications network is modeled as a
graph where the processors are represented by nodes and
the communication links are represented by arcs. Let V =
{1,2,..., N} be the set of nodes in the graph and let L
denote the set of directed arcs in the network. Let W be the
set of origin-destination (O-D) pairs (commodities) in the
network. For each O-D pair w € W, the arrival of new
traffic, which may consist of multiple sessions, is modeled
as a Poisson process with rate v, (packets/sec). Then the
arrival of new traffic to the network is a Poisson process
with rate I' = ¥ ,y,. For O-D pair w, the overall traffic is
transmitted over one path in the set P,, a given set of
simple directed paths from the origin to the destination of

O-D pair w. Let P be the set of all simple directed paths in
the network. For each link / € L, the capacity is C, pack-
ets /sec.

For each O-D pair w € W, let x, be 1 when path p € P,
is used to transmit the packets for O-D pair w and 0
otherwise. In a virtual circuit network, all of the packets in
a session are transmitted over one path from the origin to
the destination. Thus L,ep,x, =1 For each path p and
link] € L, let 8, denote an indicator function which is one
if link ! is on path p and zero otherwise. Then, the
aggregate flow of packets over link [is given by the left
hand side of (1).

In the network, there is a buffer for each outbound link.
Using Kleinrock’s independence assumption,['¥) the arrival
of packets to each buffer is a Poisson process where the rate
is the aggregate flow over the outbound link. It is assumed
that the transmission time for each packet is exponentially
distributed with mean C;!. Thus, each buffer is modeled
as an M/M/1 queue.

The problem of determining a path for each O-D pair to
minimize the average number of packets in the network is
formulated as the following nonlinear combinatorial opti-
mization problem.

r z X,v,0 —
Zﬁ=min2 weW&pe P,V ptwCpl (IP)
lelL Cl - Zwewzpe waprapl
subject to
Y T e, <C viel €))]
weW peP,
Y x, =1 YweWw 2)
pep,
x,=0o0rl VpeP, ... (3)

The objective function represents the average number of
packets in the network. We can also use the average packet
delay as our objective function by multiplying 1,/T to the
objective function of IP. However, by including the term
1/T, an extra number of overhead messages will be needed
to estimate TI'. Constraint (1) requires that the aggregate
flow not exceed the capacity for each link. Constraints (2)
and (3) require that all of the traffic for one O-D pair be
transmitted over exactly one path.

An equivalent formulation of the above problem is given
by (IP) below. We redefine x, to be the rate at which
packets for O-D pair w € W are transmitted over path
p € P,. (IP) is better suited for the development of a
distributed algorithm and the application of the La-
grangean Relaxation method.

fi
Zp=min), ——— (Ip)
leL Cl ”fl
subject to
Y X x8,<f, Viel 4)

weW pepP,

Copyright © 2001 All Rights Reserved

Lin and Yee

0<fi<C Vel (5)
3 X, = Y YweW (6)

pPEP,
x,=0ory, VpeP,, we W.)

For each link /, a variable f; is introduced. We interpret
these variables to be “estimates” of the aggregate flows,
whereas in [8] it is interpreted as a link utilization. We
prefer to be consistent with the routing literature where
routing variables are either flows or probabilities. Since the
objective function is strictly increasing with f; and (IP} is a
minimization problem, each f; will equal the aggregate
flow in an optimal solution. As the reader will see in the
next section, the introduction of {f;} decouples the problem
into two subproblems in the Lagrangean Relaxation.

2. Lagrangean Relaxation and Dual Problem

Lagrangean relaxation has been applied to obtain excellent
heuristic solutions and tight lower bounds for the traveling
salesman problem,*® the concentrator location problem,?’!
a topological design problem in centralized computer net-
works”) and many other NP-complete problems. Gavish
and Hantler® have successfully applied this technique to
develop a centralized routing algorithm for virtual circuit
networks. As in [8], we dualize constraint (4) to obtain the
following relaxation

fi
Zp(u) = min —_—
P {leL G- h
+ 3 “1{ Y X X,y _fl}} (LR)
leL weW peP,
subjectto 0<f;<C; VIEL (8)
Y x,=% VweWw ©)

PEP,

x,=0o0ry, VpeP,,weW. (10)

The solution to (LR) is given below. For every [€ L,

el 1 1
fr= {7 VG ¢

0 otherwise.

if u, >

To find the solution {x,}, for each O-D pair w e W, a
shortest path p, € P, is found, where u, is the arc weight
for link 1. Then,
e
X, = 0

It is clear that {f;} can be computed using a distributed
algorithm. If link ! corresponds to directed arc (i, k), then
we will refer to node 7 as the tail and node k as the head of
directed link I, i.e. i = tail(!} and k = head(!). In the dis-
tributed routing protocol (to be described), tail(!) will com-
pute a multiplier u; associated with directed link . From

if p=p,,

12
if p# plL. a2

this and knowing C,, tail(!) can compute f; from equation
(11). To calculate {xp}, a number of distributed shortest
path algorithms can be used.?% 331

At this point, it would be useful to point out the reason
for specifying the feasible values of X, pE p,, as {0, v,)
instead of {0,1} as in [8]. Note in finding {x,,} above all
commodities solve a shortest path problem with respect to
one weighted graph where the arc weights are {u,}. By
dualizing constraint (1), the Lagrangean Relaxation "“ap-
pears” to include |W| different shortest path problems (for
each w € W, there is a weighted graph with arc weights
{u,%,D). In reality, one would make an adjustment in the
implementation so there is just one weighted graph. But,
the formulation (IP) is cleaner.

For any u > 0, by using the weak Lagrangean duality
theorem, the optimal objective function value of
(LR), Z(u), is a lower bound on Z;,.'% Naturally, one
wants to determine the greatest lower bound by

Zp = maz](ZD(u). (D)
uz

There are several methods for solving the dual problem
(D)*. The most popular method is the subgradient
method.* % 171 Let an |L| vector y be a subgradient of
Z(w). In iteration k of the subgradient optimization proce-
dure, the multiplier for each link ! € L is updated by

WL = k4 tryk.
The step size t* is determined by
Zfp — Zp(u*
tk =5 P sz() (13)
ly“l
where Z!, is an objective function value for a heuristic
solution (upper bound on Z;;) and 8 is a constant, 0 < &
<2
Both Z,(u*) and lly*|I* can be expressed in the form
L e By In [36], an efficient distributed protocol (based
upon using an arborescence) is given. Thus, the subgradi-
ent method can be distributed. However, in the next sec-
tion, we present a distributed algorithm to solve (D) based
upon a multiplier adjustment procedure which requires
fewer overhead messages.

8. A Distributed Muitiplier Adjustment Method

In this section, we introduce a distributed multiplier ad-
justment method. The standard multiplier update rulef'”)
given in (13) was used by Gavish and Hantler!® to develop
a centralized algorithm for the routing problem in virtual
circuit networks. During the operation of a network, it is
essential for network reliability that the routing assign-
ments be computed by a distributed algorithm. Then the
operation of the system does not rely on a central node
which might fail. If the distributed routing algorithm is
well designed, the portion of the network that fails can be
isolated and the remaining portion of the network can still
deliver messages. The multiplier update rule presented
below (i) has a lower communication complexity than (13)
and (ii) results in a distributed algorithm that is more

Copyright © 2001 All Rights Reserved

Multiplier Adjustment Procedure

stable to the input parameters and finds slightly tighter
lower bounds on the minimum objective function value
than an algorithm using (13) for most cases in the computa-
tional experiments.

For iteration k and link /, let f£ be the solution given by
(11) and let gf be the aggregate link flow determined from
{x,}. Our approach is to develop a multiplier adjustment
scheme so that Z,(u) is very likely to increase from itera-
tion to iteration. To illustrate the idea, the structure of
Zp(u) is given in Figure 1. Let x be the vector of routing
decision variables x,’s. Since X ={x[L,cp x, = ¥, w €
W; x,=0orvy,, Yp € P, w € W} contains a finite num-
ber of elements, X can be represented by {x‘|t =1,...,T}
where each x' is a feasible routing decision vector with
respect to constraints (9) and (10). Then (LR) can be rewrit-
ten as

fi
Zp(u) = min —_—
° {IEL G-/
+Tul £ T xs, —fl}} (LR")
leL weW peP,
subjectto 0 < f; < C, Viel (14)
xteX. (15)

Minimizing the objective function with respect to {f;} first
and using (11), we obtain the following equivalent form for
(LR)

Zp(u) = 3 k() + min ¥ ”1{

lel x'eX |eL

Y ¥ x,’,Bp,} (16)

weW peP,

zi(w)

where
1-uG) if !
—(1 = +/u if u, > —
hy(uy) = (i) ' (17)
0 otherwise.

If all of the multipliers except u, in (16) are fixed, then
Zp(u) is reduced to a one-dimensional function which is
denoted by z,(u,). Figure 1 shows a typical graph of z,(u,).
Each smooth dotted curve in Figure 1 is obtained by fixing
the routing vector to be an x’ on the right hand side of (16)
where all of the multipliers except u, are fixed. The curve
corresponding to x' is referred to as curve t. Since for
every value of u,, z,(u,) is the minimum objective function
value of (16) over all x' € X, z,(u,) is the lower envelope
(solid curve) of those dotted curves.

For each u,, there is a curve t that coincides with z,(u,).
We refer to the corresponding x’ as a shortest path flow at
u;. For example, in Figure 1 the shortest path flow corre-
sponding to u} is x'. Note that for each u,, the shortest
path flow is not necessarily unique. For example, at the
break point #, in Figure 1, both x! and x? are shortest
path flows,

Let g/{u,) be the aggregate flow on link I (determined
from {x,}) given that all the multipliers except u, are fixed.
There are several properties of the functions z(u,), f(u,),
and g,(u,;). First, z,(u,) is concave since Z,(u) is concave.
Second, (g,(u;) — fi(u;)) is a subgradient of z,(u,) at u,.
Third, z,(u;} is nondifferentiable which results from
changes in the shortest path flow when u, changes at break
points. Fourth, from equation (11), f; is a nondecreasing
function of u,. The aggregate flow g,(,) is a nonincreasing
function of u;. This follows from the fact that if u; is
increased, then the number of shortest paths using link !
will not increase. Consequently, g,(u,) does not increase.

curve 1

curve 2

curve 3

curve 4

iR Lt et e e

!

'5,
R fommmmm e

Uy

A typical graph of z,(u,).

Copyright © 2001 All Rights Reserved

Lin and Yee

Let %, be the value that maximizes z,(u,). Let #if = C,(C, —
¢,(u¥)~? which is the point where the slope of the curve
that coincides with z/(uf) (i.e. curve 1 in Figure 1) is zero
(f(aF) = g(uf)).

We developed a Cyclic Coordinate Multlpher Adjust-
ment Procedure (CCMAP) which finds %§.2% Since z,(u,) is
maximized in each iteration, the dual ob)ectlve function
increases in every iteration. However, this procedure re-
quires too many overhead messages to be passed in each
iteration. Furthermore, the convergence rate is slow which
is a characteristic of the cyclic coordinate ascent method.*!!

To reduce the communication complexity of the CCMAP,
we develop a simpler scheme which uses only local infor-
mation (ff, gk, and uf) to update u; in such a way that
Z(u,) is very likely to increase. We find a range which
includes #f. Then we design a procedure that determines
u¥*1 in this range. The following lemma specifies a range
that includes uf.

Lemma 1. #¥ is between u¥ and 4f = C(C, — g2

The proof of Lemma 1 is given below. If gf(u¥) — f{(uf)
=0, then uf =1uf =i} by the optimality condition to a
nondifferentiable function. If g¢f(u¥) — f¥(u¥) > 0, then
there are two cases to consider. The first case is that the
directional derivative along the positive u; axis direction is
less than or equal to 0. Then uf = #f. The second case is
that the directional derivative along the positive u, axis
direction is greater than 0, which is shown in Figure 1.
Obviously, the positive u, axis dlrectlon is an ascent direc-
tion. We then increase u; up to u, where gf(uf) — fK(@5)
= 0. At @, the corresponding x‘ (and g,(1,)) may change
Since g,(u,)is a nomncreasmg function of u,, we find at @i
a subgradient g(af) — f(af) = gl(u,) - gkuh < 0.
Therefore, the directional derivative at #¥ along the posi-
tive u; axis direction is either 0 or negatlve Because z,(u;)
is concave, ﬁ{‘ € [u,, i ,] Ina 51m11ar way, it can be shown
that if gf(uk) — ff(u¥) > 0, then 7% e [af, uf]. =

Lemma 1 provides a range that includes uf. To find #f,
one can limit the search for #f in the range specified by
Lemma 1 instead of the real line. The step size in each
iteration is then bounded above by |} — u¥]. If the stepsize
is carefully controlled (to be small), then Z;(u) will very
likely increase in each iteration. For example, in Figure 1
starting from uf, if the step size is less than |B — u}|, where
z(u¥) = z/(B), then z,(u,) (and Z,(u)) will increase. A
number of schemes could be devised to find a point in this
range to use as the multiplier in the next iteration (u} +1)
For example, we might choose uf*' = ((m, — 1)u !
#1¥)/m, where m, > 1 is a parameter used to control the
stepsize. The following scheme, which determines uf*!
indirectly (by a mapping from the flowspace), results in
better computatlonal results. Con51der the flow values fF
and gf which correspond to uf and #f, respectively. We
then choose ff*! to be the following convex combination
of f¥ and gf

(m — D+ gf
mi

flk+ 1

1
=fi+ E(gz"—fz")' (18)

By (11), uf*! and this flow value are related by

frr=cl1 - L (19)
I 1 u5(+1CI N

By (18) and (19), the new multiplier that yields f/*' is

(m=Dff+gf |

2
uf*' =y . 20
1 [G,] (20)

The idea is illustrated in Figure 2. In Figure 2, the curve
shows the relationship between f; and u; given by (11).
The flows corresponding to the two boundary points uf
and #f (Lemma 1) are f and gf, respectively. Suppose
m, = 2. Then ff*! is the midpoint between ff and gf.
Then uf*! is determined by mapping from f*1.

It is possible that ff*! > C, if gf is large. In this case,
u%¥*1 cannot be determined from (18). This was handled by
setting g¥ to C; which guarantees that f*! < C,.

In order to assure the existence of the inverse of f(u)),
we assume that ¥ > C[!, Vi€ L, k> 1. This is a valid
restriction since {ulu, > Cj’', VI € L} contains an optimal
solution to (D). Assume the contrary that there exists some
#, < C{'! in an optimal solution. From (16), (17) and Figure
1, z(u;) is a piecewise linear and nondecreasing function
from 0 to C;'. Then u, can be increased to C;! without
decreasing the dual objective function value.

Equation (20) can also be expressed in the following
iterative form

=t + gt = £
where

x ClamC, — @m — Dff - gf]
tf = 3 - - (21)
(C =)Y ImC = (my = DS — gf']

From (21), it is clear that the parameter m, affects the
stepsizes. Note that in (21) there is a stepsize for each link.
This is analogous to the distributed routing algorithm for
datagram networks proposed in [36] where there is one
stepsize for each node. In the subgradient method, there is
one stepsize given by (13).

There are a number of advantages of the above multi-
plier adjustment method over the subgradient method.
First, it is simpler and the calculation of stepsizes requires
only local information [cf. (20)]. Second, from (20), uf > 0,
Vie L, k> 1. This eliminates any need for a feasibility
check (and a projection) for the multipliers. Third, it can be
shown that if the objective function is z,(u,) and the se-
quence {m,} is carefully chosen, {uf} will converge to an
optimal solution to the dual problem. A proof of this is
given in the Appendix. Note that under the same assump-
tions, the sequence {uf} determined by the subgradient
method is not guaranteed to converge to an optimal solu-

Copyright © 2001 All Rights Reserved .

Multiplier Adjustment Procedure

fi

I
I
|
I
¢
1
I
¥
I
i
I
'
I
1
I
I
1
1
1
1
I
'
|
1
I
[

k+1 ~ b
U w Uy

u

Agure 2. A geometrical illustration of the multiplier adjustment procedure.

tion if the optimal objective function value is not known a
priori.

The above multiplier adjustment method can be imple-
mented either in a one-at-a-time manner, i.e., only one
multiplier is adjusted in each iteration, or in an all-at-once
manner, i.e., all multipliers are adjusted in each iteration.
To make {u*} converge to a limit, we use a monotone
increasing sequence {mlk = 1,2, ...} where m, tends to
infinity as k approaches infinity. Then from equation (18),
fE*? will be equal to ff as k (and m,) approaches infinity.
From (20), the convergence of {f{} implies that {uf} will
converge to a limit.

The overall algorithm is

0. Initialization
0.a Generate a candidate route set for each O-D pair.
0.b Assign a nonnegative value to each multiplier.
0.c Set the iteration counter k to zero.
1. Test stopping criteria
If the number of iterations has reached the pre-
specified limit, stop.
Otherwise, go to step 2.
2. Solve the Lagrangean Relaxation
2.a For each link [, each tail(]) calculates ff by using
.
2b A distributed shortest path algorithm is used to
solve subproblem 2 for each O-D pair.
2.c For each link /, each tail(/) estimates gf.
3. Adjust the multipliers
3.a For each link [, each tail(!) uses (20) to calculate

uk+1,

3bke«k+1
3.c Go to step 1.

Note that Steps 2 and 3 can be performed using dis-
tributed computation. Furthermore, Steps 2 and 3 possess a
high degree of parallelism so that the implementation of
the algorithm is computationally efficient on a parallel
system.

4. Computational Resuits

The distributed routing algorithm for virtual circuit net-
works described in Section 3 was coded in FORTRAN 77
and run on a SUN 4/60 workstation. In the multiplier
adjustment procedure, the all-at-once method (all muttipli-
ers are adjusted in each iteration) was implemented. Recall
that the algorithm parameter in the multiplier adjustment
procedure that effects the stepsize is m,. We chose m, = k
+ 1. The maximum number of iterations allowed was 200
iterations. The choice of the initial values of the multipliers
was {4C;"'} (however we found in our computational ex-
periments that the initial values had little effect on the
results).

The algorithm was tested on three networks-ARPA,
RING and OCT with 61, 32 and 26 nodes, respectively.
Their topologies are shown in Figures 3, 4 and 5. Each
undirected arc in the networks represents two directed arcs
oriented in opposite directions. For each of the three
networks, it was assumed that for each O-D pair the
total traffic rate at which packets are generated is 1 packet/
sec. Other characteristics of the test problems are given in
Table 1. In the third column, the maximum number of

Copyright © 2001 All Rights Reserved

Lin and Yee

& /’P\ -O—C o C/y G
G— i L v ¢
C\ G Y4 0 N A
J’ O G—eo—o—
¢ ¢ 1)
| ¢ o)
q D
O-0-—06 -9 j
[o
b [0
5— &
o

Agure 8. The 61-node 148-link ARPA1 net.

Apwe 4. The 32-node 120-link RING net.

candidate paths for each O-D pair is given. The fourth
column specifies the total number of candidate paths (the
number of integer decision variables) in the network. The
fifth column specifies the capacity of each link in each
network, For each O-D pair, distinct shortest paths were
found with respect to several sets of randomly generated
arc weights. Another possible scheme to generate candidate
paths is the k shortest path algorithmP% * or the route
generation algorithms proposed in [9].

Table I summarizes the results of our computational

P £ -
T A N4
o)
./
o Fon Fan\ o
N4 A4 A4 A4

RAgure 5. The 26-node 60-link OCT net.

experiments. The sixth column is the largest lower bound
on the optimal objective function value found in 200 itera-
tions. Recall that this is the best objective function value of
the dual problem. The seventh column gives the best objec-
tive function value for (IP) in 200 iterations. The percent-
age difference [(upper-bound—lower-bound) X
100 /lower-bound] is an upper bound on how far the best
feasible solution found is from an optimal solution. The
ninth column provides the CPU times which includes the
time used to input the problem parameters. These reported
CPU times measure the total CPU time used when every
operation in the algorithm is performed sequentially. When
implementing the algorithm in an actual virtual circuit
network, the computations will be performed on N sepa-
rate computers and most of the computations will be done
in parallel. An analysis of the computation and communi-
cation times of a distributed implementation of the algo-
rithm is given in the next section.

From an inspection of Table I, it is clear that the dis-
tributed routing algorithm is efficient and very effective in
finding near-optimal solutions. For every test problem (net-
works with up to 61 nodes), the distributed algorithm
determines a solution that is within 1% of an optimal
solution in less than 2 minutes of CPU time on a SUN 4 /60
workstation.

We also implemented the subgradient method to com-
pare with our multiplier adjustment procedure. A subset of
the test problems was used for the comparison. In our
implementation, Z%, was initially chosen as 1 and updated
to the best upper bound found from iteration to iteration.
In (13), & was initially set to 2 and halved whenever the
objective function value did not improve in a certain num-
ber of iterations which is referred to as the improvement
counter limit (ICL). For each test problem, three different
values (5, 10, and 15) were chosen as the improvement
counter limit. The maximum number of iterations allowed
was 200 iterations for each choice of the improvement
counter limit. The choice of the initial values of the multi-
pliers was also {4C;"'}. Taking advantage of our previous
result that {#,lu, > C;?, VI € L} contains an optimal solu-
tion to (D), each multiplier u; was projected to
max{C; !, u;}. The results are reported in Table IIL

From Table II, observe that the performance of the sub-

Copyright © 2001 All Rights Resemned

257

Multiplier Adjustment Procedure

Table I. Summary of Computational Results when |P, | < 3, Vw € W and the Multiplier Adjustment

Procedure Was Adopted
Total Lower Upper Percentage CPU No.
Case Network Routes Routes Link Bounds Bounds Difference Time of
No. D /Pair Generated Capacities (msec) (msec) (%) (sec) Iter.
1 ARPA 3 6178 500.0 17.4840 17.4855 0.009 68.8 200
2 " 3 6178 375.0 29.8638 29.8671 0.011 64.5 200
3 " 3 6178 333.3 39.7388 39.7526 0.035 64.6 200
4 " 3 6178 300.0 55.4848 55.5512 0.120 64.8 200
5 g 2 5290 500.0 17.5499 17.5514 0.008 52.7 200
6 " 2 5290 375.0 30.1057 30.1099 0.014 52.5 200
7 " 2 5290 333.3 40.2991 40.3069 0.019 54.7 200
8 " 2 5290 300.0 57.2823 57.3000 0.031 52.8 200
9 OCT 3 999 83.33 133.969 134.179 0.157 7.6 200
10 ! 3 999 76.92 170.861 171.277 0.243 7.6 200
11 " 3 999 71.43 225.927 226.435 0.225 7.6 200
12 " 3 999 66.67 321.001 321.882 0.274 7.6 200
13 " 3 999 62.50 551.968 553.538 0.284 7.6 200
14 " 2 794 83.33 138.764 138.816 0.037 6.5 200
15 g 2 794 76.92 180.730 180.863 0.074 6.3 200
16 g 2 794 71.43 249.540 249.975 0.174 6.6 200
17 ! 2 794 66.67 405.505 409.330 0.943 6.2 200
18 RING 3 2422 100.0 40.4421 40.4916 0.122 14.0 200
19 " 3 2422 75.00 61.6944 61.8227 0.208 14.2 200
20 " 3 2422 60.00 90.6356 91.0166 0.420 14.3 200
21 " 3 2422 50.00 133.643 134.798 0.864 15.0 200
22 " 2 1646 100.0 41.0024 41.0335 0.076 10.8 200
23 g 2 1646 75.00 63.0833 63.1527 0.110 10.8 200
24 " 2 1646 60.00 93.8908 94.1015 0.224 10.8 200
25 " 2 1646 50.00 141.529 142.589 0.749 10.9 200

gradient method is sensitive to the choice of ICL, e.g. cases
2, 3. There does not seem to be a way of choosing ICL
which consistently gives the best results. For example, in
cases 2 and 3, 15 is the best value for ICL, while in cases 18
and 19, 5 is the best choice. Also observe that for case 4 the
subgradient method did not provide a satisfactory result. A
possible explanation for this is that the performance of the
subgradient method strongly depends on Z},. In case 4, the
nehtwork is heavily loaded and it is harder to find a good
Zip.

Another set of experiments was performed to investigate
the effect of the number of candidate paths for each O-D
pair. We tested the extreme case where P, was the set of
all simple paths for O-D pair w. The multiplier adjustment
procedure and the subgradient method were tested and the
results are reported in Tables IIl and IV, respectively. In
this set of experiments for the RING network, the simple
scheme we used to obtain heuristic solutions to (IP) did
not perform well. We developed a similar (and simpler)
randomization routing scheme to the one mentioned in [8]
to obtain better heuristic solutions. Our randomization pro-
cedure recorded the routing assignments determined by
solving the K (LR)'s for the past K iterations (including
the current one) starting from the ith iteration. For each

O-D pair, the heuristic routing was then determined by
randomly selecting one routing assignment from the K
alternatives (not necessarily distinct). The rationale for our
randomized routing scheme is that the step size t* is small
when k is large. Consequently, when k is large, the short-
est path costs between two consecutive iterations for each
O-D pair is small. Thus those shortest paths for different
iterations can be considered as good. In the experiments,
we found that the above randomization routing scheme
was needed only for the RING network, where K and i
were chosen to be 4 and 14, respectively. This scheme
resulted in average percentage differences 0.7% and 1.9%
for the multiplier adjustment procedure and the subgradi-
ent method, respectively. Whereas, the original simple
heuristic routing scheme resulted in average percentage
differences 20.0 % and 16.9% for the multiplier adjustment
procedure and the subgradient method, respectively.
Comparing Table I with Table II and Table III with Table
IV, observe that our multiplier adjustment procedure pro-
vides slightly better lower bounds (and slightly smaller
percentage differences) for most of the cases. The advan-
tage is more pronounced when the network was heavily
loaded. Another advantage is that the subgradient method
is sensitive to the value chosen for the improvement counter

Copyright © 2001 All Rights Reserved

Lin and Yee

Table Il. Summary of Computational Results when |P,| < 3, Vw € W and the Subgradient Method

Was Adopted

Total Lower Upper Percentage @ CPU No.

Case Network Routes Routes Link Bounds Bounds Difference Time of
No. D /Pair Generated Capacities ICL (msec) (msec) (%) (sec) Iter.
1 ARPA 3 6178 500.0 5 174840 17.4849 0.005 94.9 200

1 " 3 6178 500.0 10 17.4841 17.4855 0.008 949 200
1 " 3 6178 500.0 15 17.4841 17.4855 0.008 94.8 200
2 ! 3 6178 375.0 5 18.7365 30.3853 62.17 95.5 200
2 y 3 6178 375.0 10 29.8621 29.8679 0.020 95.5 200
2 " 3 6178 375.0 15 29.8632 29.8673 0.014 90.9 200
3 " 3 6178 333.3 5 261334 40.4198 54.66 91.2 200
3 " 3 6178 333.3 10 38.9452 39.9008 2.454 91.2 200
3 " 3 6178 333.3 15 39.6230 39.8268 0.514 91.1 200
4 " 3 6178 300.0 5 33.5300 56.8388 69.52 914 200
4 " 3 6178 300.0 10 33.5300 56.3559 68.08 91.3 200
4 ¥ 3 6178 300.0 15 35.8739 56.1676 56.57 91.2 200
9 OoCT 3 999 83.33 5 133.845 134.200 0.265 12.1 200
9 " 3 999 83.33 10 133.960 134.179 0.163 12.1 200
9 " 3 999 83.33 15 133.969 134179 0.157 11.6 200
10 " 3 999 76.92 5 170.778 171.275 0.291 11.6 200
10 ! 3 999 76.92 10 170.856 171.297 0.258 11.6 200
10 i 3 999 76.92 15 170.855 171.296 0.258 11.7 200
11 " 3 999 71.43 5 225495 226.320 0.366 12.1 200
11 " 3 999 71.43 10 225828 226.751 0.409 11.6 200
11 i 3 999 71.43 15 225847 226.736 0.394 11.6 200
12 " 3 999 66.67 5 318254 323.671 1.702 11.7 200
12 " 3 999 66.67 10 318449 322713 1.339 11.6 200
12 " 3 999 66.67 15 318287 322.843 1.431 11.6 200
13 " 3 999 62.50 5 539.612 562.007 4.150 11.6 200
13 " 3 999 62.50 10 546903 554.272 1.347 11.6 200
13 g 3 999 62.50 15 551.003 555.356 0.790 11.8 200
18 RING 3 2422 100.0 5 40.4430 40.4665 0.058 21.0 200
18 " 3 2422 100.0 10 404430 40.4925 0.123 20.0 200
18 i 3 2422 100.0 15 40.4427 40.4928 0.124 20.1 200
19 " 3 2422 75.00 5 61.6945 61.8022 0.175 20.2 200
19 " 3 2422 75.00 10 61.6953 61.8322 0.222 20.2 200
19 " 3 2422 75.00 15 61.6861 61.8372 0.245 20.2 200
20 " 3 2422 60.00 5 90.5655 91.0165 0.498 20.3 200
20 " 3 2422 60.00 10 90.6340 91.0412 0.449 203 200
20 " 3 2422 60.00 15 90.6299 91.0833 0.500 20.4 200
21 " 3 2422 50.00 5 131957 134552 1.967 20.3 200
21 v 3 2422 50.00 10 133.241 134.708 1.101 20.2 200
21 " 3 2422 50.00 15 133456 134.774 0.988 203 200

limit. Whereas, our multiplier adjustment procedure is not
sensitive to the value chosen for m,. For example, in test
problem 29 in Table IV, when the improvement counter
limit was chosen as 5, 10 and 15, the percentage differences
were 124.8%, 4.1% and 19.7%, respectively. For the same
problem (test problem 29 in Table III), the multiplier ad-
justment procedure yielded solutions where the percentage
differences were all within 1% for several different values
of my, e.g. (log,(k + 3)?,log,(k + 3),2k,(k + 1)/2 and vk.
The experiments also showed that the multiplier adjust-
ment procedure consistently performed well when m, was

_ Conyright © 2001_All Rights Beserved

always chosen as (k + 1). In other words, no fine tuning of
any parameter is needed in the multiplier adjustment pro-
cedure. In addition, the subgradient method requires more
CPU time for each choice of ICL. If both methods are
implemented as distributed algorithms, the multiplier ad-
justment procedure requires fewer overhead messages and
has a higher degree of parallelism than the subgradient
method.

We next investigate the effect of |P,| on the best objec-
tive function value. A comparison of Table I with Table III
shows that the improvement resulting from using all sim-

Table IIl. Summary of Computational Results when |P,|Is the Set of All Possible Simple Paths for
O-D Pair w € W and the Multiplier Adjustment Procedure Was Adopted

Multiplier Adjustment Procedure

Lower Upper Percentage CPU No.
Case Network Routes Link Bounds Bounds Difference Time of

No. ID /Pair Capacities (msec) (msec) (%) (sec) Iter.
26 ARPA All 500.0 17.2419 17.2413 0.031 100.5 200
27 " All 375.0 28.8370 28.8516 0.051 100.6 200
28 " All 3333 37.5638 37.5934 0.079 100.7 200
29 " All 300.0 50.3963 50.5282 0.262 100.8 200
30 oCT All 83.33 132.372 133.218 0.639 95 200
31 " All 76.92 167.612 168.792 0.704 95 200
32 " All 71.43 218.774 220.801 0.927 9.6 200
33 " All 66.67 301.877 306.703 1.599 9.6 200
34 RING All 100.0 39.9422 40.0468 0.262 21.8 200
35 " All 75.00 60.3848 60.6205 0.390 219 200
36 " All 60.00 87.4219 88.0207 0.685 21.9 200
37 g All 50.00 125.395 127.207 1.445 219 200

ple paths over at most 3 candidate paths for each O-D pair
ranges from 0.7% to 9.9%. The improvement is greater than
5.7% for only one case. However, the corresponding in-
crease in the computation time varied from 25% to 46%.
This suggests that if a small but carefully chosen candidate
route set is used, very good routing assignments will be
obtained. Similar results were reported in [8].

The next set of experiments were performed to compare
our distributed multiplier adjustment procedure with an-
other distributed subgradient-based scheme for solving (D).
In [12], three different subgradient-based methods were
discussed. The first one is the standard subgradient method
given by (13). In the second and third schemes, the multi-
plier updating rules are given by

uk+1 — uk + tk(yk/”yk”) (22)
uktl = uk + tkyk (23)

where y* is a subgradient and t* is the step size. (22) and
(23) were proposed by Shor®*! and Held and Karp/!®
respectively. It was stated in [12] that for a piecewise linear
objective function, there was no reason to believe that
either updating scheme is superior to the other. However,
(23) is better suited for distributed computation since it
does not involve the calculation of ||y*|l. But the conver-
gence rate by using (23) is slow.'2 We compared the
relative performance of our multiplier adjustment proce-
dure with (23).

If t* satisfies the following two conditions: (i) lim, _, ,t*
= 0 and (ii) Z5_ ¥ — o, then (D) is solved optimally.?>! A
natural choice for {t!} is {(ak)™!} where « is a positive
scalar. The results of using (23) for the OCT network are
reported in Table V.

From an inspection of Table V and test problems 12 and
13 in Table I, our multiplier adjustment procedure resulted
in better percentage differences (0.274% versus 0.746% and
0.284% versus 3.379%). Note that 0.746% and 3.379% are
the best results obtained from using different values of «.

In addition, the performance of (23) is sensitive to the value
of . From Table V, the best choice of a was 32 and 8 for
test problems 12 and 13, respectively. When 8 was used in
test problem 12 and 32 is used in test problem 13, the
percentage differences were 7.741% and 16.144% respec-
tively. This suggests that there may be no good way of
choosing « for a given network with varying loads.

5. Performance Analysis and implementations
In the previous section, we principally focused on the CPU
time needed to determine near-optimal routing assign-
ments. In this section, we also consider the overhead mes-
sages needed to support the implementation of the routing
algorithm in an actual network. Considering the delays of
these overhead messages, we analyze the performance of
the distributed virtual circuit routing algorithm. In the
process of analyzing the algorithm, several implementation
issues are discussed. We refer to the time to perform one
iteration of the algorithm as the cycle time. This consists of
the computation time plus the communication delays of
control messages to solve the Lagrangean relaxation and to
update the multipliers. The performance measure used to
evaluate the algorithm is the average time needed to deter-
mine a routing assignment with an objective function value
which is within 1% of the optimal objective function value.
Below we analyze the average cycle time. Then the perfor-
mance measure is the average cycle time times the number
of iterations needed (based upon computational experi-
ence) to determine a solution that is within 1% of an
optimal solution.

To simplify the analysis, the following assumptions are
made.

1. Each cycle of the routing algorithm is initiated at the
same time at each destination node in the network. The
overhead to synchronize the system is ignored.

2. The determination of the candidate route sets is a
preprocessing procedure and |P,| < 3.

Copyright © 2001 All Rights Reserved

Lin and Yee

Table IV. Summary of Computational Results when | P, | Is the Set of All Possible Simple Paths
for O-D Pair w € W and the Subgradient Method Was Adopted

Lower Upper Percentage CPU No.

Case Network Routes Link Bounds Bounds Difference Time of
No. ID /Pair Capacities ICL (msec) (msec) (%) (sec) Iter.
26 ARPA All 500.0 5 17.2417 17.2463 0.027 1135 200
26 " All 500.0 10 17.2421 17.2459 0.022 113.6 200
26 ! All 500.0 15 17.2418 17.2469 0.030 113.6 200
27 ! All 375.0 5 18.7366 29.7556 58.80 113.8 200
27 ! All 375.0 10 28.8363 28.8548 0.064 113.8 200
27 " All 375.0 15 28.8368 28.8512 0.050 113.8 200
28 " All 333.3 5 26.1333 57.0993 118.5 114.9 200
28 " All 333.3 10 37.2166 37.6878 1.266 1144 200
28 " All 333.3 15 37.4134 37.6197 0.551 114.6 200
29 " All 300.0 5 33.5300 75.3962 1249 114.6 200
29 " All 300.0 10 48.6000 50.5679 4.053 114.3 200
29 " All 300.0 15 47.6061 56.9923 19.72 114.7 200
30 OCT All 83.33 5 109.440 137.190 25.36 9.5 200
30 g All 83.33 10 132.267 133.238 0.742 9.5 200
30 ! All 83.33 15 132361 133.218 0.648 9.4 200
31 " All 76.92 5 126.252 174.528 38.24 9.5 200
31 " All 76.92 10 167.395 168.792 0.834 9.5 200
31 ! All 76.92 15 167.484 168.792 0.781 9.5 200
32 ” All 71.43 5 211972 220.801 4.166 9.5 200
32 g All 71.43 10 218.045 220.801 1.264 9.5 200
32 " All 7143 15 218744 220.801 0.940 9.5 200
33 " All 66.67 5 290.660 308.636 6.184 9.5 200
33 ! All 66.67 10 301.644 308.153 2.158 9.5 200
33 ! All 66.67 15 300.975 308.358 2453 9.5 200
34 RING " 100.0 5 39.9568 40.0546 0.249 21.8 200
34 " All 100.0 10 39.9593 40.0719 0.282 217 200
34 ! All 100.0 15 39.9580 40.0526 0.237 21.8 200
35 ! All 75.00 5 60.4201 60.7632 0.568 21.8 200
35 " All 75.00 5 60.4292 60.6761 0.409 22.0 200
35 " All 75.00 15 60.4060 60.6949 0.478 21.8 200
36 " All 60.00 5 86.2898 88.3229 2.356 219 200
36 ! All 60.00 10 87.5353 88.1803 0.737 21.8 200
36 " All 60.00 15 87.5202 88.1960 0.772 21.6 200
37 " All 50.00 5 116.452 132.689 13.94 220 200
37 g All 50.00 10 125.500 127.443 1.548 222 200
37 " All 50.00 15 125.069 127.268 1.759 220 200

3. At each node, there is a single processor for all of the
computations. Whenever a control message arrives at a
node, it is placed in the “computation queue”. After a
control message has been processed, it is then routed to
the appropriate outbound link. It is assumed that the
computation processor speed is large relative to the
average arrival rate of control messages. Then the delay
for a control message at the computation processor is
approximately equal to its service (computation) time.

4, The arrivals of data and control messages to each
queue are Poisson processes.

5. Control messages are given higher priority than data
messages. The queue discipline is nonpreemptive.

6. Acknowledgments for the control messages are piggy-

backed. The window size is large enough so that the
transmissions of the control messages are not delayed.

7. The channels are error-free so that no retransmissions
are needed.

8. A supervisor node collects information needed to com-
pute the primal and dual objective function values to
determine the quality of the routing assignments ob-
tained so far.

9. There are two types of control messages used in solv-
ing the shortest path problem. In the upstream phase,
each destination sends a Type 1 control message for
each path for which it is a destination. Each Type 1
control message contains 4 bytes (32 bits) specifying the
path cost, the origin ([(log, N)] bits), the destination

Conyright © 2001 Al Rights-Reserred

ooCTvoUu

281

Multiplier Adjustment Procedure

Table V. Computational Results when the Multiplier Updating Rule Specified by Equation (23)
Was Implemented

Total Lower Upper Percentage CPU No.

Case Net Routes Routes Link Bounds Bounds Difference Time of
No. ID /Pair Generated Capacities tk (msec) (msec) (%) (sec) Iter.
12 ocCT 3 999 66.67 (K)! 201.364 333.688 65.71 77 200
12 " 3 999 66.67 (2! 235.740 326.001 38.29 7.6 200
12 " 3 999 66.67 (461 272.267 325.752 19.64 7.8 200
12 " 3 999 66.67 8k)! 300.713 323.990 7.741 7.6 200
12 " 3 999 66.67 (16k)~! 317.066 322.815 1.813 7.6 200
12 " 3 999 66.67 (32k)7! 320.374 322.764 0.746 77 200
12 “ 3 999 66.67 (64k)~1 313.981 322.842 2.822 77 200
12 " 3 999 66.67 (128k)~! 299.813 324911 8.371 7.7 200
12 " 3 999 66.67 (256k) 7! 279.909 330.996 18.25 7.7 200
12 " 3 999 66.67 (512k)7! 256.302 340.240 32.75 7.7 200
12 " 3 999 66.67 (1024k)~' 232.147 505.580 117.8 7.7 200
13 " 3 999 62.50 (0! 176.689 564.947 219.7 77 200
13 " 3 999 62.50 2k)! 417.939 564.286 35.01 7.6 200
13 " 3 999 62.50 ai! 527.676 563.783 6.843 7.6 200
13 " 3 999 62.50 8k)! 545.992 564.441 3.379 7.7 200
13 v 3 999 62.50 (16k)~1 525.360 561.919 6.959 77 200
13 " 3 999 62.50 (32k)! 488.368 567.209 16.14 7.7 200
13 " 3 999 62.50 (64k)~1 445.444 593.925 33.33 7.7 200

([(log, N)] bits) and overhead (2 bytes for CRC and
ACK). The path cost at a node is the length of the path
from the node to the destination. Each node updates
the Type 1 message and passes it upstream. After each
origin receives a Type 1 message for each candidate
path, it determines a shortest path. Then each origin
sends a Type 2 control message down the shortest path
in the downstream phase. The Type 2 control message
has the same format as a Type 1 message where the
path cost is replaced by an estimate of the traffic
requirement between the O-D pair.

10. The average data packet length is B bits. The load of
the network is controlled such that the utilization factor
of each link due to data traffic does not exceed p,,,,, .

Assumption (2) can be relaxed so that all simple paths
are candidate paths. This would certainly increase the relia-
bility of the network since more alternative paths are avail-
able for each O-D pair. Moreover, the paths could be
calculated during the operation of the network taking into
account failed links or nodes. Assumption (4) is not valid
since the arrivals of control or data messages are not
Poisson processes at intermediate nodes. However, this is a
standard assumption made for analytical tractability.

In Assumption (8), the supervisor node only evaluates
the primal and dual objective function values. The supervi-
sor does not participate in solving (LR)’s or updating the
multipliers. Therefore, the distributed routing algorithm
can still function even if the supervisor node fails. How-
ever, when the error bound is within a prespecified toler-
ance (e.g. 1%), the supervisor node can broadcast a control
message to terminate the algorithm. In Assumption (10) we

assume that a flow control mechanism limits the link uti-
lization factor for data traffic. In the experiments we inves-
tigate how the average cycle time varies with different
upper bounds on the link utilization factor due to the data
traffic.

Let Phase 1 be the period when each origin determines a
shortest path for each destination. Let Phase 2 be the period
when each node estimates the aggregate flow for each
outbound link and updates the multipliers. The following
notation will be used in analyzing the average cycle time.

Di: The total number of control packets that traverse link !
during the upstream phase

D}: The total number of control packets that traverse link !
during the downstream phase

K;: the length of a Type 1 message (bits)

K,: The length of a Type 2 message (bits)

C: The capacity of each link (bps)

t;: The time to calculate f; by equation (11)

f,: The time to update a Type 1 message

t3: The time to read a Type 2 message and to update the
aggregate link flow

ts: The time for an origin to compare the path costs for a
destination to determine a shortest path

ts: The time for a node (processor) to update the associ-
ated multipliers

G: The maximum outdegree in the network

Let ¢ be the average time for Phase 1. In order for every
Type 1 control message to reach the origin and for the
origin to compare the path costs and to determine a short-
est path for every destination, the following inequality

Copyright © 2001 All Rights Reserved

282

Lin and Yee

must hold
Di Kl 2 pmaxB
K T ?) T
(N=Dt,+ ¥ {ta+— + ,
leh C DiK,
4 2 1 _—
tC
<t VpeP (24)

where h_ is the set of links along path p. The first term of
the left hand side of inequality (24) is an upper bound on
the time for an origin to determine a shortest path for each
of its destinations. Each term in the summation is the
computation time for updating a Type 1 message plus the
average communication delay for the control messages.
The third term in the summation is the average waiting
time in the queue for the higher priority traffic in a nonpre-
emptive M/G/1 queue where D!/t and (K,/C)* are the
average arrival rate and the second moment of the service
(deterministic) time of the control messages. The term
2 pax B/C upper bounds the mean arrival rate times the
second moment of the service time of the data messages
(exponentially distributed). Inequality (24) states that the
average time for Phase 1 must be at least as large as the
average end-to-end delay for each path plus the time for an
origin to calculate a shortest path for each of its destina-
tions. The shortest time for Phase 1, denoted by T, is
given by

T, = min{t|t satisfies (24) forall pin P}. (25)

Note the left hand side of (24) is convex and monotone
decreasing. The value of t that satisfies (24) with equality
is unique. To find T, we set the difference between the
left hand side and the right hand side of (24) to zero and
then use Newton’s method to determine the root of the
equation.

The average time for Phase 2 is found by finding the
smallest t satisfying the inequality

Di K2 2 pmaxB
K, T\c) T c
Gt +Gtg+ Y {ty+ — + ,
lehp C 2|1 = DlKZ
tC
<t VpeP. (26)

The first term on the left hand side of inequality (26) is an
upper bound on the time for a node to determine the
estimate of aggregate flow for each of its outbound links.
The second term is an upper bound on the time for a node
to update the multiplier for each of its outbound links.
Note that D) < D! since a Type 2 control message will be
sent only over the shortest path for each O-D pair. Since it
is difficult to predict the shortest paths to be determined in
each iteration, we use D} as an upper bound on Dj. We
apply Newton’s method to (26) to determine Tc, which is
the shortest time for Phase 2. Then (T, + T¢,) is a conser-
vative estimate of the average cycle time.

The above analysis is applied to a number of actual

Copyright © 2001 All Rights Reserved

networks. The topologies of the test networks are shown in
Figures 3 to 12. In the calculations, C, B and p,, were
assumed to be 50Kbps, 500 bits, and 0.6, respectively. f,
through ¢; were estimated by computational experiments.
Since each of these computation times is too small to
measure, we measured the time needed to do each opera-

)
N

Figws 8. The 21-node 52-link ARPA2 net.

Qf\ﬁ

O

Agure 7. The 13-node 48-link NORDIC net.

=

Fgure 8. The 15-node 38-link SWIFT net.

263

Multiplier Adjustment Procedure

P

PR

Apme 8. The 10—node 56-link SITA net.

P

QA

Q

{)

O

Fgure 10. The 14-node 42-link PSS net.

/N o—/—%

k
CV

The 12-node 50-link GTE net.

T~

Figure 11.

tion a very large number of times and calculated the
average time for each operation. From experiments on a
SUN 4/60 machine, t, = 1.7 x 1075 seconds, t, = 1.6 X
1077 seconds, t; =15 X 10“ seconds, t, = 2.0 x 1077
seconds and t; = 1.5 X 1077 seconds.

The average cycle times for each of the network topolo-
gies are reported in Table VL. The second and third columns
show the computation time and the communication delays
in a cycle, respectively. The fourth column gives the aver-
age cycle time. From an inspection of Table VI, the compu-
tation times are negligible (no greater than 0.11%) com-
pared with the communication delays. This shows that an
overwhelming majority of the real time needed to compute
a near-optimal routing assignment is due to the communi-
cation delays. Since the distributed computation of routing
assignments is essential for the reliability of the network,
the communication overhead is unavoidable.

Since the performance measure is the average cycle time
times the number of iterations needed to determine a
solution that is within 1% of an optimal solution, we did a
set of experiments to determine the number of iterations
needed. For all of the networks, except the SWIFT network,
the number of iterations needed was less than 46 iterations.
For the SWIFT network, we were only able to obtain
a solution that was within 1.3% of an optimal solution in
300 iterations. From these experiments, the performance

—

FAgurs 12. The 12-node 44-link TRANSPAC net.

Table VI. Average Cycle Time for Different Networks
Computation Communication —Average
Network Time Time Cycle Time
ID (msec) (msec) (msec)
ARPA1 0.08556 1555.40 1555.49
RING 0.16272 319.955 320.118
ocCT 0.07670 353.159 353.236
ARPA2 0.07601 291.680 291.756
NORDIC 0.12431 147.647 147.772
SWIFT 0.12471 146.025 146.150
SITA 0.14086 107.039 107.180
PSS 0.15912 150.924 151.084
GTE 0.12411 115.104 115.228
TRANSPAC 0.10696 121.796 121.903

Copyright © 2001 All Rights Reserved

264

Lin and Yee

measure for each network was evaluated. It was found that
the longest time (ARPA1) was about 14 seconds.

We next investigated the effect of the link capacities on
the average cycle time. The GTE network was used as the
test network. The relationship between the capacities and
the average cycle time are reported in Table VII. Column 1
shows how the capacities were varied. Columns 3 and 4
reports the communication delays and average cycle times
determined from (24) and (26). Table VII shows that the
average cycle time is approximately inversely proportional
to the link capacities when the link capacities are small
(when the communication delays are dominant). As ex-
pected, the computation times become dominant as the link
capacities are increased.

The total computation time in the distributed implemen-
tation is considerably less than the computation time in the
centralized implementation reported in Table I for the
ARPA1, RING, and OCT networks. The reported CPU
times in Table I for the implementation on one computer
includes the time to input the parameters and the time to
calculate the error bounds. In order to make a fair compari-
son, we calculate the computation time for the centralized
implementation analytically by

(N = 1)Nt, + Y (Dit, + Djty) + L(#; + t5). (27)
leL

The first term is the total time for each origin to compare
the path costs for each destination and to determine a
shortest path. The second term is the total time to calculate
the path costs and to calculate the aggregate link flows. The
last term is the total time to calculate the estimates of link
flows and the time to update all the multipliers. (27)
divided by the computation time in the distributed imple-
mentation reported in Table VI is the speedup due to the
parallelism of the algorithm. Since #; dominates the other
time components by about two orders of magnitude, the
speedup for the GTE network is about 50 X 1.7 X
1075 /(1.2411 X 10™%) = 6.849 where 50 is the number of
links in the GTE network. In general, the computation time
in the distributed implementation is approximately equal
to t,G and the speedup is approximately L/G.

We also investigated the impact of the data traffic on the
average cycle time. The link utilization factor due to the
data traffic was parameterized for the GTE network and
the corresponding cycle time was calculated. The relation-
ship between the link utilization factor and the average
cycle time are depicted in Figure 13. Observe that the curve
in Figure 13 tends to be linear when the link utilization
factor due to the data traffic is larger than 0.3.

The algorithm can be implemented in an asynchronous
manner. We refer to the degree of synchronization as the level
of coordination among the nodes in the network. In an
asynchronous algorithm, the level of coordination is low. In
this type of implementation, the initiation of the solution of
the shortest path problems is not coordinated among the
destination nodes. Furthermore, each node is permitted to
update the multiplier of one of its outbound links when-
ever it receives a Type 2 control message indicating that the
aggregate flow on the link will change. Each new session

Table VII. Impact of Link Capacities on the Average
Cycle Time
Link Computation Communication Average
Capacities Time Time Cycle Time
(Kbps) (msec) (msec) (msec)
50 0.12411 115.104 115.228

100 0.12411 57.5355 57.6596

200 0.12411 28.7515 28.8757

400 0.12411 14.3597 14.4838
800 0.12411 7.16410 7.28821
1600 0.12411 3.56686 3.69097
3200 0.12411 1.76932 1.89343
6400 0.12411 0.87245 0.99656
12800 0.12411 0.42695 0.55106
25600 0.12411 0.20773 0.33184
51200 0.12411 0.10104 0.22515
102400 0.12411 0.04929 0.17340
204800 0.12411 0.02407 0.14818

would be routed over the current shortest path. A draw-
back of an asynchronous implementation is that each node
will use a different m,. Also it is harder to compute a lower
bound since different portions of the network will be solv-
ing different (LR)s.

For a synchronous algorithm, the level of coordination is
high so that each node is performing the same iteration of
the algorithm as described in Section 4. That is, each
destination initiates the solution of the shortest path prob-
lem at the same time. Also, the multiplier for each link is
updated at the same time. With the synchronous imple-
mentation, extra control messages must be exchanged
among nodes to determine the times to (i) initiate the
solution of the shortest path problems and (ii} update the
multipliers. The asynchronous implementation requires
fewer overhead messages than the synchronous implemen-
tation we analyzed. However, it is harder to define the
cycle time and analyze the time performance for an asyn-
chronous algorithm.

Another issue is to control m; so that the algorithm
adapts to changes in the topology or requirements. Recall
that {m,} is a monotonically increasing sequence. For very
large values of {m,}, the step size is very small. If a severe
requirement or topological change occurs, m; can be reset
to its initial value to improve the adaptability of the algo-
rithm.

6. Summary and Conclusions
This paper focuses on the development of a distributed
routing algorithm for virtual circuit networks. We pre-
sented Gavish and Hantler’s®! formulation of this problem
as a nonlinear combinatorial optimization problem. We
modified their formulation in a way that is mathematically
trivial but results in a distributed protocol which requires
fewer status messages. As in [8], we applied Lagrangean
relaxation to develop an algorithm.

We found that the standard multiplier update rule used

Copyright © 2001 All Rights Reserved

265

Multiplier Adjustment Procedure

0.16

0.14

0.12

0.1

The average cycle time

0.08

0.06

1

Il 1 i 1

0.04 : '
0

0.1 0.2 0.3

0.4

0.5 0.6 0.7 0.8 0.9 1

The maximun link utilization factor
Agure 13. The impact of the maximum link utilization factor on the average cycle time.

in [8] required the transmission of too many overhead
messages. We introduced a new way of updating the mul-
tipliers that requires much fewer overhead messages. In
addition, the resulting distributed algorithm determines
slightly better lower bounds and error bounds on the
minimal average delay in less CPU time for most of the test
problems. Furthermore, our proposed multiplier adjust-
ment procedure is more stable than the subgradient method.
That is, the performance of the multiplier adjustment pro-
cedure is less sensitive to the choice of algorithm parame-
ters. We also found that the size of the candidate route set
for each O-D pair has little effect on the final objective
function value.

We compared the multiplier adjustment procedure with
another distributed subgradient-based method. The com-
putational results showed that our proposed multiplier
adjustment procedure provides better lower bounds, error
bounds and is more stable.

We analyzed the time to perform each iteration of the
distributed algorithm. This includes the computation (CPU)
and communication (queueing and transmission) delays of
the overhead messages needed to support the distributed
implementation. The results showed that the communica-
tion delays dominate the computation time. In addition, we
showed that the speedup of the distributed algorithm with
respect to computation time is approximately equal to the

number of nodes in the network divided by the largest
outdegree of the network.

Appendix
In this appendix, we prove the convergence property of the
multiplier adjustment procedure when z/(u,) is maxi-
mized.

As proven in Section 3, only the region {ulu; > 1/C,
VI € L} needs to be considered when solving (D). By (11),

fi=C(- y1/u,C,), or equivalently u(f) = C,/(C, —
fi)?. Using Taylor’s theorem to expand u, at f} yields
- BN f (28)
Wy=u + ———=4j
(€= £y
where f/ is between ff and ff + Af,.
From (18) and (28),
2C = £
uk*l = yk 4 I,agl I (29)
(G = 1) M

From (29) and the fact that (C, — f/) > 0, the step size tf
expressed in (21) is lower bounded by 2/C?m,. By the
result proven in [25], it can be shown that if limk_,wt,k ={
and X5_#f = » then max, 02,1} can be solved opti-
mally. It is easy to construct a sequence {m,} that makes
{t[} satisfy the above two conditions, i.e., {m, = k}.

Copyright © 2001 All Rights Reserved

Lin and Yee

Acknowledgments

Support for this research was made in part by Contract
No. N00228-87-R-4196 from the Naval Postgraduate School
(to FYS.L. and JRY.) and in part by Contract DAAL
03-88-k0059 from the Army Research Office and National
Science Foundation grant NCR-9016348 (to J.R.Y.).

References

1. D.G. CanTOR and M. GERLA, 1974. Optimal Routing in a
Packet Switched Computer Network, IEEE Transactions
on Computers C-23, 1062~1069.

2. P.J. Courtois and P. SEMAL, 1981. An Algorithm for the
Optimization of Nonbifurcated Flows in Computer
Communication Networks, Performance Evaluation 1,
139-152.

3. A. DaneT, R. Despres, A.L. Rest, G. PicHON and S.
RITZENTHALER, 1976. The French Public Packet Switch-
ing Service: The TRANSPAC Network, in Proceedings
Third International Computer Communication Conference,
Pp- 251-260.

4. M.L. FisHER, 1981. The Lagrangian Relaxation Method
for Solving Integer Programming Problems, Manage-
ment Science 27:1, 1-18.

5. L. FrRaTTA, M. GERLA and L. KLEINROCK, 1973. The Flow
Deviation Method: An Approach to Store-and-forward
Communication Network Design, Networks 3, 97-133.

6. R.G. GALAGER, 1977. A Minimum Delay Routing Algo-
rithm Using Distributed Computation, IEEE Transac-
tions on Communications COM-25:1, 73-85.

7. B. GavisH, 1982. Topological Design of Centralized
Computer Networks: Formulations and Algorithms,
Networks 12, 355-377.

8. B. GavisH and S.IL. HANTLER, 1983. An Algorithm for
Optimal Route Selection in SNA Networks, IEEE Trans-
actions on Communications COM-31:10, 1154-1160.

9. B. GavisH and 1. NEUMAN, 1986. Capacity and Flow
Assignment in Large Computer Networks, in Proceed-
ings IEEE Infocom, pp. 275-284.

10. A.M. GEOFFRION, 1974. Lagrangean Relaxation and Its
Uses in Integer Programming, Mathematical Program-
ming Study 2, 82-114.

11. M. GerLA, 1986. Routing and Flow Control in ISDN’s,
in Proceedings 1986 ICCC, pp. 643-647.

12. J.L. GOrFIN, 1977. On the Convergence Rates of Subgra-
dient Optimization Methods, Mathematical Programming
13, 329-347.

13. J.P. Gray and T.B. McNEewL, 1979. SNA Multiple-
system Networking, IBM System Journal 18, 263-297.

14. GTE Telenet Communications Corporation, 1982. Func-
tional Description of GTE Telenet Packet Switching Net-
works, Vienna, VA (May).

15. M. HeLD and R.M. KaRp, 1970. The Traveling Salesman
Problem and Minimum Spanning Trees: Part I, Opera-
tions Research 18, 1138-1162.

16. M. HeLD and R.M. Karp, 1971. The Traveling Salesman
Problem and Minimum Spanning Trees: Part II, Mathe-

17

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

matical Programming 1, 6-25.
. M. HeLD, P. WoLre and H.D. CROWDER, 1974. Valida-
tion of Subgradient Optimization, Mathematical Pro-
gramming 6, 62-88.
V.L. HoBerecHT, 1980. SNA Function Management,
IEEE Transactions on Communications COM-28, 594-603.
L. KLEINROCK, 1975 and 1976. Queueing Systems, Vol-
umes 1 and 2. Wiley-Interscience, New York.
Y.S. LIN and JR. YEE, 1988. A Distributed Method for
the Routing Problem in Virtual Circuit Data Networks,
Technical Report, Communication Science Institute,
University of Southern California, Los Angeles, CA
(August).
D.G. LUENBERGER, 1984. Linear and Nonlinear Program-
ming, Addison Wesley, Reading, MA.
J. McQUILLAN, 1974. Adaptive Routing Algorithms for
Distributed Computer Networks, Ph.D. Thesis, Har-
vard University (May).
A. MIRZAIAN, 1985. Lagrangean Relaxation for the Star-
star Concentrator Location Problem: Approximation
Algorithm and Bounds, Networks 15, 1-20.
S. NarasIMHAN, H. PRkUL and P. Dg, 1988. Route
Selection in Backbone Data Communication Networks,
Computer Networks and ISDN Systems 15, 121-133.
B.T. PoLYAK, 1967. A General Method for Solving Ex-
tremal Problems, Soviet Mathematics Doklady 8, 593-597.
A. RAJARAMAN, 1978. Routing in TYMNET, in Proceed-
ings European Computation Conference.
H. RupIy, 1976. On Routing and “Delta Routing”: A
Taxonomy and Performance Comparison of Techniques
for Packet-switched Networks, IEEE Transactions on
Communications COM-24:1, 43-58.
M. ScHWARTZ and T.E. STERN, 1980. Routing Techniques
Used in Computer Communication Networks, IEEE
Transactions on Communications COM-28, 539-552.
A. SEGALL, 1979. Optimal Routing for Virtual Line
Switched Data Networks, IEEE Transactions on Commu-
nications COM-27.
A. SEGAL, 1981. Advances in Verifiable Fail-safe Rout-
ing Procedures, IEEE Transactions on Communications
COM-29, 491-497.
A. SEGAL, 1983. Distributed Network Protocols, IEEE
Transactions on Information Theory IT-29:1, 23-35.
D.R. SHIER, 1979. On Algorithms for Finding the k
Shortest Paths in a Network, Networks 9, 195-214.
N.Z. SHOR, 1968. On the Rate of Convergence of the
Generalized Gradient Method, Kibernetika 4:3.
D.M. Torkis, 1988. A k Shortest Path Algorithm for
Adaptive Routing in Communications Networks, IEEE
Transactions on Communications COM-36:7, 855—-859.
L.R. Tymss, 1981. Routing and Flow Control in TYM-
NET, IEEE Transactions on Communications COM-29,
392-398.
JR. YEE, 1985. Distributed Routing and Flow Control
Algorithms for Communication Networks, Ph.D. The-
sis, Massachusetits Institute of Technology (December).

Copyright © 2001 All Rights Reserved

Copyright of ORSA Journal on Computing is the property of INFORMS: Institute for Operations
Research and its content may not be copied or emailed to multiple sites or posted to a listserv
without the copyright holder's express written permission. However, users may print, download, or
email articles for individual use.

