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a b s t r a c t

The target positioning service is one of useful applications for wireless sensor networks. So far, most
papers considered traditional uniform quality of services (QoS) for target positioning in sensing fields. How-
ever, it is possible that all regions in a sensing field have different requirements for target positioning
accuracy. We also concern the terrain of sensing fields might have some limitations for placing sensors.
Therefore, this paper proposes a generic framework for the sensor deployment problem supporting dif-
ferential quality of services (QoS) for target positioning to all regions in a sensing field. We define weighted
error distance as metric of quality of positioning services. This problem is to optimize the QoS level for tar-
get positioning under the limitations of budget and discrimination priorities of regions, where locations
and sensing radiuses of all sensors should be determined. We formulate the problem as a nonlinear inte-
ger programming problem where the objective function is to minimize of the maximum weighted error
distance subject to the complete coverage, deployment budget, and discrimination priority constraints.
A Lagrangean relaxation (LR) based heuristic is developed to solve the NP-hard problem. Experimental
results reveal that the proposed framework can provide better quality of services for positioning than
the previous researches, which only handles uniform QoS requirements. Moreover we evaluate the per-
formance of proposed algorithm. As well as we adopt the previous algorithm, ID-CODE, as the benchmark
to examine the proposed heuristic. The results show the proposed algorithm is very effective in terms of
deployment cost.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In a wireless sensor network (WSN), numbers of tiny sensor
nodes collect physical information, process and forward the local
information to the sink nodes. Hence, the back-ends can obtain glo-
bal views and make appropriate decisions according to the informa-
tion provided by the sensors (Akyildiz, Su, Sankarasubramaniam, &
Cayirci, 2002). Obviously, the quality of the information is impor-
tant, which dominates the final decisions of back-end in WSN.
The quality of information can be improved by constructing a
WSN providing high quality data through careful planning in the
sensor deployment phase (Maleki & Pedram, 2005; Yan, He, &
Stankovic, 2003).

One of useful applications for sensor network is the target loca-
tion (Zou & Chakrabarty, 2003), i.e. target positioning, which deci-
des the position of targets by cooperation of sensors in a sensor
network (Chakrabarty, Iyengar, Qi, & Cho, 2002; Li, Xu, Pan, &
ll rights reserved.
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Pan, 2005). Hence, the sensors must be deployed reasonably. Be-
sides, the sensor network coverage has to cover the whole sensing
field, if the coverage areas of multiple sensors overlap, they may all
report a target in their respective zones. Based on the reports, loca-
tion of the target can be determined by back-ends. If the target in a
zone (i.e. region) can be detected by an unique set of sensors, the
zone is denoted by distinguishable zone. The diameter of a distin-
guishable zone determines the granularity of the target position-
ing. Some papers use service points as reference points to replace
zone/region for positioning services (Ray, Starobinski, Trachten-
berg, & Ungrangsi, 2004; Ray, Ungrangsi, Pellegrini, Trachtenberg,
& Starobinski, 2003). When sensor networks decide a target being
at a certain service point, it means the target might occur on the
zone/region including the service point.

Wang et al. define quality of service (QoS) parameters for OSI
function layers (Wang, Liu, & Yin, 2006). In this paper, we take ac-
count of positioning accuracy as the QoS parameters, which is one of
kind of data qualities for application layer. We also define the error
distance as metric of positioning accuracy. In our previous paper,
the uniform (i.e. fixed) sensing radius of all sensor nodes and uni-
form positioning quality in a sensing field are taken account in the
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problem, where the all locations of sensors are decision variables
(Lin & Chiu, 2005). Nevertheless, several papers adopt various
(i.e. adjustable) sensing radiuses to cope the sensor deployment
problem under coverage and cost limitations (Chakrabarty et al.,
2002; Dhawan, Vu, Zelikovsky, Li, & Prasad, 2006; Dhillon & Cha-
krabarty, 2003). In addition, given the locations of all sensors, the
positioning accuracy can be improved by adjusting sensing radius
of each sensor (Chiu, 2007; Chiu, Lee, & Peng, 2008). It motivated
us to take account sensing radius as one of decision variables in
this paper.

So far, most papers consider traditional uniform quality of posi-
tioning services in a sensing field. However, it is possible that all
regions in a sensing field require different accuracy for target posi-
tioning services. For addressing this issue, we define the discrimi-
nation priority for each region of interest and redefine weighted
error distance as the metric to measure positioning accuracy. In
addition, we also concern the terrain of sensing fields might have
some limitations for placing sensors. Therefore, this paper pro-
poses a generic framework for the sensor deployment problem to
support differential QoS for target positioning.

This problem is to optimize the QoS level for target positioning
under the limitations of budget and discrimination priority of each
region, where the number of sensors, location and sensing radius
of each sensor should be determined. We formulate the problem
as a nonlinear integer programming problem where the objective
function is to minimize the maximum weighted error distance sub-
ject to the complete coverage, deployment budget, and discrimina-
tion priority constraints.

The sensor deployment problem where subject to coverage, can
be corresponded to the set-cover problem, as well as the sensor
deployment for target positioning problem also can correspond
to the identifying code problem. Both the two classical difficult
problems were proven to be NP-complete (Charon, Hudry, & Lob-
stein, 2002; Etcheberry, 1977; Slijepcevic & Potkonjak, 2001). Iden-
tifying code problems have been studied widely since 1998
(Karpovsky, Chakrabarty, & Levitin, 1998). A lot of research groups
focused on information theoretical investigations, simultaneously
several researchers made efforts in solving application oriented
problems. As well as the target positioning problem belongs to
the latter. From a theoretical perspective, the proposed sensor
deployment problem is a variation of classical identifying code
problems. Surveillance and target positioning ability are adopted
as the QoS parameters of the sensor deployment problem in this
paper; we formulate the sensor deployment problem as a mathe-
matical optimization model. Hence, the proposed optimization
problem is NP-hard by the definition (Charon, Hudry, & Lobstein,
2003; Neapolitan & Naimipour, 2004). To our knowledge, so far
using the weighted error distance as a metric to measure position-
ing quality and allowing differential positioning quality require-
ments for all regions are not handled in previous papers.

Afterwards, a Lagrangean relaxation (LR) based heuristic is
developed to cope with the NP-hard problem (Fisher, 1981,
1985). In sensor deployment phase, the proposed efficient algo-
rithm can be executed at powerful computers or back-ends of
WSNs to decide topology of sensor networks under the complete
coverage, deployment budget, and discrimination priority con-
straints; it should not run at any sensors after deployment. This pa-
per adopts the previous algorithm, ID-CODE, as the benchmark to
examine the proposed algorithm.

The rest of this paper is organized as follows: Section 2 presents
related work. In Section 3, the problem is described. Section 4 for-
mulates the problem as a mathematical optimization model. Sec-
tions 5 and 6 present the algorithms and computational results.
In Section 7, the performance of the proposed Lagrangean relaxa-
tion based algorithm is evaluated. Finally, we conclude the paper
in Section 8.
2. Related work

In this section, we review the related positioning techniques and
the previous papers from practical and theoretical perspectives.

2.1. Positioning systems

Several positioning systems (i.e. location systems) have been
proposed and realized. For instance, the satellite-based global posi-
tioning system (GPS) is a common outdoor location system. How-
ever, GPS is not useful in indoor, dense, or harsh environments (Ray
et al., 2004).

Hightower and Borriello presented three main techniques for
location-sensing, including: triangulation, scene analysis, and
proximity, which may be engaged in location systems individually
or in mixing (Hightower & Borriello, 2001). Due to wave frequency,
the indoor location systems were classified into three categories:
infrared, ultrasound, and radio (Ray et al., 2004). These systems
determine distance according to the signal strength and a known
signal-to-noise ratio (SNR). Hence, the sensitivity for environmen-
tal conditions is very significant; quality of positioning is injured
by interference frequently.

Bulusu, Heidemann, and Estrin (2000) suggested placing multi-
ple beacons in a positioned field with overlapping regions of cover-
age and transmitting periodic beacon signals. Targets can be
localized to the centroid of their proximate reference points. The
beacons in positioning fields can be analogous to sensors of sensing
fields in this paper.

So far the existing techniques for positioning have its character-
istics and weaknesses. The location system designers can choose
appropriate approaches according to situations and requirements
of real-world. Therefore, sensor networks supporting positioning
services can provide another low-cost choice for them.

2.2. Identifying codes

In Karpovsky et al. (1998), identifying codes first are proposed as
a means for uniquely identifying malfunctioning processors in
multiprocessor systems. Such systems can be modeled as a graph
G = (V,E), where V is the set of processors and E is the set of links
between processors. Several researchers adopted concept of iden-
tifying codes (i.e. power vectors in this paper) to construct location
systems. Given an undirected graph G and integer r (r-cover for
each vertex), Charon et al. (2003) have proved the decision prob-
lem of the existence of an r-identifying code of size at most k code-
word in G, is NP-complete for any r.

The goal of the identifying code problem is to find an identifying
code with minimum cardinality for a given directed or undirected
graph. Laifenfeld and Trachtenberg surveyed identifying code re-
searches from applications, theoretical connections, and approxi-
mating optimal solutions perspectives (Laifenfeld & Trachtenberg,
2008); clearly classifying the research field. Both theoretical inves-
tigations and practical applications, the identifying code problem
has been studied widely. As well as the target positioning problem
belongs to the latter. From a theoretical perspective, the proposed
sensor deployment problem is a variation of classical identifying
code problems.

2.3. CIQ approach

Chakrabarty et al. (2002) investigated target location problem
in sensor networks. The sensing field is presented as a (two or
three dimensional) grid of points. If the coverage areas of multiple
sensors overlap, they may all report detecting a target, then the
location of the target can be determined by overlap of these sen-



Fig. 1. Grid-based sensing field and power codes.
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sor’s detection zones. If every grid point in the sensing field is cov-
ered by an unique subset of sensors, location systems can easily
determine the target occurring and its location by the set of report-
ing sensors.

Chakrabarty et al. solve the problem of placing sensors for un-
ique target identification by the theory of identifying codes; we de-
note it by CIQ approach in this paper. The authors first build a
primitive block which is completely discriminable by sensors on
the block. Then, a larger sensing field can be constructed by tiling
primitive blocks on the sensing field. However, this placement
manner can use in regular sensing fields and fixed sensor detection
radius. In additional, the grid points in boundary of sensing fields
do not take into consideration by CIQ approach directly. Therefore,
additional placement methods are necessary for achieving a com-
pletely distinguishable sensing field.
2.4. ID-CODE

Ray et al. apply identifying code theory to design a location sys-
tem in sensor networks (Ray et al., 2004). They divide a continuous
sensing field into a finite set of locatable regions represented by a
designated point (a service point in this paper). Each service point
can be identified unambiguously.

Ray et al. propose ID-CODE algorithm to deploy sensors in some
of service points and build an identifying code for the given graph.
First, every vertex is deployed a sensor, as a codeword. In each loop
of ID-CODE algorithm, one of codeword is checked whether it can
be deleted and results in identifying code. The authors suggest
three predetermined sequences to visit vertices: random, descend-
ing, and ascending orders. The performance of ID-CODE algorithm
depends on the sequence of vertices. Therefore, the authors pro-
pose a hybrid heuristic for ordering. When the average degree of
graph is greater than half the number of vertices, the authors pro-
pose the descending order of degree is used. Otherwise, the
ascending order is used in ID-CODE algorithm.

Both CIQ and ID-CODE approach are sophisticated; the papers
significantly contribute to target positioning research field. Hence,
CIQ approach is difficult by various sensing radius, we only adopt
ID-CODE algorithm as one of benchmarks to examine the proposed
algorithm in this paper.
Fig. 2. A sensing field with 150 service points and 6 ROIs.
3. Problem description

A number of papers investigate the sensor placement problems
with grid based sensing field (Chakrabarty et al., 2002; Dhillon &
Chakrabarty, 2003; Dhillon, Chakrabarty, & Iyengar, 2002). A grid
based sensing field can be represented as a collection of two- or
three-dimensional grid points. In this paper, we adopt grid based
placement method and organize the sensing field as a set of grid
points. The grid point, which requires the surveillance or position-
ing service, is also called service point in this paper. The distance
between two adjacent grid points is used as the length unit. The
granularity of the grid points is determined by the requirement
for the positioning accuracy of application systems. A set of sensors
can be deployed on the grid points to monitor the sensing field. The
forms of sensing fields are not limited in the paper; any irregular
forms should be pre-plotted to grid based fields, as well as the pro-
posed approach can handle them. But, we still use rectangular
sensing fields as a case for discussion in this paper.

If each grid point/service point in a sensing field can be detected
by at least one sensor, we call the field is completely covered, as
shown in Fig. 1. In this context, a target can be detected at any
place in the field (Lin & Chiu, 2005). A power vector, which is analog
to identifying code, is defined for each service point to indicate
whether sensors can cover the service point in a field. As shown
in Fig. 1, the power vector of service point 8 is (0,0,1,1,0,0) corre-
sponding to sensor 4, 6, 7, 9, 10, and 12. In a completely covered
sensing field, when each service point has a unique power vector,
we note the sensing field is completely discriminated, as shown in
Fig. 1. In this case, as soon as a target occurs in a grid of the sensing
field, it can be located by the back-end according to the power vec-
tor of the service point.

Sometimes, due to resource (i.e. number of sensor nodes) limi-
tations, a completely discriminated sensing field cannot be con-
structed. Consequently, these may lead to wrong determinations,
whenever a target occurs at any one of the service points. Position-
ing accuracy, therefore, becomes a major consideration in solving
the problem. The error distance, which presents the Euclidean dis-
tance between the actual and determined locations for one target,
is one of the most natural criteria to measure the positioning accu-
racy. Hence, when complete discrimination is impossible, the goal
of this problem is to minimize the maximum error distance, that is,
to optimize the positioning accuracy of the sensor network. Be-
sides, the differential quality of positioning accuracy requirements
is considered in the paper, we naturally adopt the weighted error
distance as the metric to measure positioning accuracy.

3.1. The framework

This study assumes that the terrain of sensing field is predeter-
mined, and that the sensor deployment problem is addressed by
the controlled approach. In other words, sensors are placed by a
prior planning to satisfy a particular QoS requirement. As shown
in Fig. 2, the sensing field can be represented as a collection of
two-dimensional grid points, which are the candidate locations
for sensors as well as the service points for the positioning service.
Sensing fields also can be presented as a set of disjoint regions of
interest (ROIs), each of them requires a different type of QoS for tar-
get positioning. In other words, all ROIs have different priorities for
discrimination. A ROI is an irregular region, which comprises a set
of adjacent service points.

As the previous papers (Chakrabarty et al., 2002; Ray et al.,
2004), this study also applies the 0/1 detection model for sensors.
In this model, the coverage indicator bit of the sensor for a service



Table 1
The levels of QoS in the scenario.

Level of QoS QoS of positioning supported for ROIs

1 Completely discriminable: None
Discriminable: ROI A
Surveillance-only: ROIs B, C, D, E, and F

2 Completely discriminable: ROI A
Discriminable: ROIs B, C, D, and E
Surveillance-only: ROI F

3 Completely discriminable: ROIs A, B, C, D, and E
Discriminable: ROI F

4 Completely discriminable: ROIs A, B, C, D, E, and F
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point is set to 1 if its sensing radius can cover the service point and
0 otherwise. Then, a power code, which is constructed by all cover-
age indicator bits of sensors, can be used to represent each service
point. A service point with an unique power code is exactly posi-
tioning. Otherwise, the error distance of positioning is the maxi-
mum distance between those service points with the same
power code.

Generally, a terrain of sensing field could have some placement
limitations. That is, for all of the positions in the sensing field, the
suitability for each placing sensor is unlikely. In most cases, sen-
sors are expensive to place at most locations, and impossible in
others, e.g. lakes or wetlands. Additionally, some locations might
require surveillance and positioning services, but not be suitable
for placing sensors.

Intuitively, we can adjust sensing radius of some sensors to
overcome the placement limitation. Nevertheless, several papers
adopt various sensing radiuses to cope the sensor deployment
problem. In addition, given the locations of all sensors, the posi-
tioning accuracy can be improved by adjusting sensing radius of
each sensor (Chiu et al., 2008). Therefore, we take account of sens-
ing radius as one of decision variables for deploying a WSN.

This study provides a differential QoS instead of a traditional
uniform QoS for target positioning. Three types of QoS for target
positioning are provided for the sensor deployment problem as
follows:

1. Completely discriminable: each service point in an ROI can be
positioned individually. This is the best QoS for positioning pro-
vided by a WSN.

2. Discriminable: a service point can be positioned in an ROI but
with a constant error distance. In this type of QoS, a lower error
distance indicates a better QoS of positioning.

3. Surveillance-only: all service points can be sensed by sensors,
but cannot be discriminated. In this paper, it is the basic QoS
type.

Assume the resource is limited; the most important ROIs need
to have the highest priorities to achieve their QoS requirements.
Therefore, except for the QoS type, each ROI can specify its discrim-
ination priority in pre-deployment phase. The QoS requirement of
ROIs with the highest-level priority can be satisfied first if re-
sources are limited. If the resources are still not exhausted, then
the requirement of the ROIs with the second-level priority can be
satisfied, and so on. The QoS requirement of ROIs with lower-level
priority is degraded if the WSN lacks resources. However, all ROIs
have to support the surveillance-only service.

The proposed sensor placement framework can be stated briefly
as follow. In a sensing field with placement limitations, a WSN is
constructed to support the differential QoS for positioning to all
ROIs in the field. The WSN is constructed by deploying finite sen-
sors at candidate locations, and adjusting the sensing radius of
each sensor. The goal of the framework is either to satisfy QoS
requirement for all ROIs, or to minimize QoS degradation for each
ROI based on its level of priority.

3.2. The scenario

The sensing field in Fig. 2 includes six ROIs, denoted by ROIs A,
B, C, D, E, and F. When an object enters ROI F, the WSN has to ob-
tain the information rapidly, i.e. the surveillance service. Moreover,
while objects reach the other ROIs, the WSN responds to locate the
position of the objects.

Moreover, three discrimination priority classes, high, medium,
and low, are assigned to each ROI to denote its importance. First,
ROI A requires the highest level of QoS for positioning, so it has a
high discrimination priority. Next, ROIs B, C, D, and E, have medium
discrimination priorities, as well as ROI F requires a low discrimi-
nation priority.

According to the above settings, the QoS is separated into four
levels, 1–4, as shown on Table 1. The best positioning quality, level
4 QoS, is satisfied if the given resource is adequate. Conversely, if
the given resource is scarce, the QoS guaranteed for the ROI with
lower service priority will be degraded to lower level of QoS, levels
1–3 QoS, according to its service priority. In this scenario, level 4
QoS is also called uniform QoS of positioning because that all of
the service points are discriminated; they have the same QoS.

4. Problem formulation

This section presents a mathematical model for the proposed
sensor placement problem. Since the proposed problem supports
the differentiated quality of positioning services as well as the pri-
oritized service, the mathematical model of the problem becomes
quite intractable. This study introduces a parameter, discrimination
weight, which is a positive real number, represents the priority of
discrimination between service points i and j. An ROI with a larger
discrimination weight has a higher priority to obtain guaranteed
QoS for positioning. In this context, the objective of the proposed
problem is to minimize the maximum weighted error distance
for all pairs of service points.

4.1. Given parameters and decision parameters

The notations used to model the problem are listed as follows:

Given parameters
A index set of the service points in the sensing field
B index set of the sensor’s candidate locations; B # A
C set of the kinds of cost for sensor
W set of the discrimination weight
R set of candidate detection radiuses for sensor
dij Euclidean distance between location i and j; i, j 2 A
ck the cost of sensor located at position k; k 2 B, ck 2 C
cmin the minimum cost of sensors
G the budget limitation for sensors
N the maximum number of sensors; N ¼ G

cmin

wij discrimination weight; i, j 2 A, wij 2W
K a larger number

Decision variables
yk 1, if a sensor is allocated at position, k and 0 otherwise,

k 2 B
vi a power vector of location i. vi = (vi1,vi2, . . . ,vik) where vik is

1 if the target at location i can be detected by the sensor at
position k and 0 otherwise, i 2 A, k 2 B

rk detection radius of sensor located at k, k 2 B



P.-L. Chiu, F.Yeong-Sung Lin / Expert Systems with Applications 38 (2011) 3613–3625 3617
4.2. Mathematical model
The original problem (IP1) is presented as follows:

ZIP1 ¼ min
v

max
8i;j2A;

i–j

wijdij 1þ K
X
8k2B

ðv ik � v jkÞ2
, !

ðIP1Þ

subject to:

v ikdik 6 ykrk; 8i 2 A; k 2 B; i – k; ð1Þ
dik=rk > yk � v ik; 8i 2 A; k 2 B; i – k; ð2Þ
v ik ¼ yk; 8i 2 A; k 2 B; i ¼ k ð3Þ
um8k2Bckyk < G; ð4ÞX
8k2B

v ik P 1; 8i 2 A; ð5ÞX
8k2B

v ik 6 N; 8i 2 A; ð6Þ

rk 2 R; 8k 2 B; ð7Þ
v ik ¼ 0 or 1; 8i 2 A; k 2 B; ð8Þ
yk ¼ 0 or 1; 8k 2 B: ð9Þ

The objective of problem (IP1) is to minimize the maximum
weighted error distance for any pair of service points. Suppose that
b ¼

P
8k2Bðv ik � v jkÞ2 presents the Hamming distance of two power

vectors belonging to two service points i and j, respectively. If the
power vectors are distinct, then the weighted error distance be-
tween service points i and j, i.e. wijdij=ð1þ KbÞ

� �
approaches zero.

In contrast, if the power vectors are the same, then the weighted
error distance between service points i and j is wijdij, which is
greater than or equal to wij. Constraint (1) requires the power vec-
tor (vik) of a service point which locates on the outside of the sensor
coverage to be zero. Constraint (2) requires that the power vector
of service points located on the interior of sensor detection range
is 1. Constraint (3) requires the coverage to be full for the service
point on which sensor is located. Constraint (4) requires that the
budget to be limited. Constraint (5) is the completed coverage
requirement. Constraint (6) requires the amount of sensors to
monitor service point i. Constraint (7) requires that the sensing ra-
dius of sensors belong to set R. Constraints (8) and (9) are integer
constraints.

Subsequently, we discuss how to determine the values of weights
and constant K , two propositions are obtained and presented as fol-
lows. As well as the proofs are presented on Appendix A.

Proposition 1. If the diameter of the sensing field is D, and the
discrimination weights are w1,w2, . . . ,wh and w1 < w2 < � � � < wh. Then
wiþ1 > DWi

for any two adjacent weights wi and wi+1.
Proposition 2. If the diameter of sensing field is D; the detection
range is r, and the discrimination weights are w1,w2, . . . ,wh, and
w1 < w2 < � � � < wh, then the constant K must satisfy constraints as
follows:

If 2r P D; then w1 > ðwhDÞ=ð1þ KÞ:
If 2r < D; then w1 > max ðwh � 2rÞ=ð1þ KÞ; ðwh � DÞ=ð1þ 2KÞ

� �
:

5. Solution procedures

This section presents the algorithm for solving the proposed
problem. An approach based upon Lagrangean relaxation is
adopted. Lagrangean relaxation is a method for obtaining lower
bounds (for minimization problems) as well as good primal solu-
tions in integer programming problem (Fisher, 1981, 1985). A
Lagrangean relaxation is obtained by identifying in the primal
problem a set of complicated constraints whose removal will sim-
plify the solution of the primal problem. Each of the complicated
constraints is multiplied by a multiplier and added to the objective
function. This mechanism is known as dualizing the complicating
constraints (Geoffrion, 1974; Held, Wolfe, & Crowder, 1974).

The solution procedure presented in this section includes four
steps: 1. equivalent model, 2. transformation, 3. relaxation, and
4. getting primal feasible solutions.

5.1. Equivalent model

The original model is a nonlinear combinatorial problem, and is
therefore hard to solve directly. Hence, an equivalent model is devel-
oped. The transformation method is also presented in this section.

An equivalent formulation of problem (IP1) is given by (IP2) be-
low. Define

Sv ¼ max
8i;j2A;i–j

wijdij 1þ K
X
8k2B

ðv ik � v jkÞ2
 !, !

; ð10Þ

and rewrite the objective function as follows:

ZIP2 ¼ min
v

Sv ðIP2Þ

subject to:

1=Sv 6 1þ K
X
8k2B

ðv ik � v jkÞ2
 !,

wijdij; 8i; j 2 A; i – j; ð11Þ

S 6 Sv 6 S; S is lower bound of Sv ;

S is upper bound of Sv ;
ð12Þ

v ikdik 6 ykrk; 8i 2 A; k 2 B; i – k; ð1Þ

dik=rk > yk � v ik; 8i 2 A; k 2 B; i – k; ð2Þ

v ik ¼ yk; 8i 2 A; k 2 B; i ¼ k ð3ÞX
8k2B

ckyk 6 G; ð4Þ

X
8k2B

v ik P 1; 8i 2 A; ð5Þ

X
8k2B

v ik 6 N; 8i 2 A; ð6Þ

rk 2 R; 8k 2 B; ð7Þ

v ik ¼ 0 or 1; 8i 2 A; k 2 B; ð8Þ

yk ¼ 0 or 1; 8k 2 B: ð9Þ

Constraint (11) is added to stipulate the upper and lower bound
of the maximum weighted error distance Sv. The theoretical upper
and lower bounds are then proposed as the follows. As well as the
proofs are presented on Appendix A.

Proposition 3. Theoretical upper bound of Sv denoted by S is wh
~d,

where wh denotes the highest discrimination weight, and ~d (i.e.
~d ¼minfD;2rg) is the minimal value of the diameter of a sensor field
(D) and the maximum sensing range of sensors (2r).

Proposition 4. Theoretical lower bound of Sv denoted by S is
wl=ð1þ d̂ � KÞ, where wl is the lowest discrimination weight, and d̂
represents the maximal possible Hamming distance of power vectors
for all service points. If �n is the maximal number of sensors that can
cover a service point; as well as N denotes the number of sensor nodes
then d̂ ¼ minf2�n;Ng.



Table 2
Truth table for variables vik, vjk, and tijk. p1 � p4 are
vertices.

vik vjk tijk Vertices

0 0 0 p1

0 1 0 p2

1 0 0 p3

1 1 1 p4

Fig. 3. The relationship of vik, vjk, tjik and vertices p1 � p4.
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5.2. Transformation

Problem (IP2) is still very hard to solve, since Constraint (11) is
nonlinear. Instead of solving problem (IP2) directly, the cutting
plane method is applied to transform Constraint (11) to a linear
Constraint (17).

An auxiliary variable, tijk, is introduced, where tijk = vikvjk. Table 2
shows the truth table for variables vik, vjk, and tijk. The possible val-
ues for the three variables only exist in four integer vertices, p1, p2,
p3, and p4, of the polyhedron, depicted in Fig. 3. The four planes
constructing the polyhedron are presented as following:

v ik � tijk P 0; 8i; j 2 A; i – j; k 2 B; ð13Þ

v jk � tijk P 0; 8i; j 2 A; i – j; k 2 B; ð14Þ

v ik þ v jk � tijk 6 1; 8i; j 2 A; i – j; k 2 B; ð15Þ

tijk P 0; 8i; j 2 A; i – j; k 2 B: ð16Þ

The auxiliary variable tijk is employed to replace vik � vjk. Con-
straint (11) can thus be transformed to linear Inequality (17). The
transformation is described as follows:

ðv ik � v jkÞ2 ¼ v2
ik � 2v ikv jk þ v2

jk ¼ v ik � 2v ikv jk þ v jk:

Let tijk = vikvjk, then (vik � vjk)2 = vik + vjk � 2tijk.
According to the cutting plane method, Constraints (13)–(15),

(18) and (19) must be added to require relationship of vik, vjk,
and tijk. Constraint (18) requires that the number of sensors that
can cover both points (i and j) cannot be over the total number
of sensors. Hence, the nonlinear combinatorial problem (IP1) is
transformed to an equivalent linear combinatorial problem (IP3)

ZIP3 ¼ min
v

Sv ðIP3Þ

subject to:

1=Sv 6 1þ K
X
8k�B

ðv ik þ v jk � 2tijkÞ
 !,

wijdij; 8i; j�A; i – j ð17Þ

S 6 Sv 6 S; S is lower bound of Sv ;

S is upper bound of Sv ;
ð12Þ
v ikdik 6 ykrk; 8i�A; k�B; i – k; ð1Þ
dik=rk > yk � v ik; 8i�A; k�B; i – k; ð2Þ
v ik ¼ yk; 8i�A; k�B; i ¼ k ð3ÞX
8k�B

ckyk 6 G; ð4ÞX
8k�B

v ik P 1; 8i�A; ð5ÞX
8k�B

v ik 6 N; 8i�A; ð6Þ

rk�R; 8k�B; ð7Þ
v ik ¼ 0 or 1; 8i�A; k�B; ð8Þ
yk ¼ 0 or 1; 8k�B; ð9Þ

v ik � tijk P 0; 8i; j�A; i – j; k�B; ð13Þ
v jk � tijk P 0; 8i; j�A; i – j; k�B; ð14Þ
v ik þ v jk � tijk 6 1; 8i; j�A; i – j; k�B; ð15ÞX
8k�B

tijk 6 N; 8i; j�A; i – j; ð18Þ

tijk ¼ 0 or 1; 8i; j�A; i – j; k�B: ð19Þ
5.3. Relaxation

This section presents the Lagrangean relaxation procedure for
the proposed problem (IP3), relaxation and decomposition, as well
as the lower bound should be discussion.

5.3.1. Relaxation
By Lagrangean relaxation, we dualize Constraints (17), (1), (2),

(3), (13), (14) and (15) of problem (IP3), as well as get the following
Lagrangean relaxation problem.

Problem (LR1):

ZD u1;u2;u3;u4;u5;u6;u7� �
¼minv Sv þ

X
8i2A

X
8j2A;i–j

u1
ijð1=Sv �ð1þK

X
8k2B

ðv ikþv jk�2tijkÞÞ=wijdijÞ
(

þ
X
8i2A

X
8k2B;i–k

u2
ikðv ikdik�ykrkÞþ

X
8i2A

X
8k2B;i–k

u3
ikðyk�v ik�dik=ykÞ

þ
X
8i2A

X
8k2B;i¼k

u4
ikðv ik�ykÞþ

X
8i2A

X
8j2A;i–j

X
8k2B

u5
ijkðtijk�v ikÞ

þ
X
8i2A

X
8j2A;i–j

X
8k2B

u6
ijkðtijk�v jkÞ

þ
X
8i2A

X
8j2A;i–j

X
8k2B

u7
ijkðv ikþv jk� tijk�1Þ

)
ðLR1Þ

subject to:

S 6 Sv 6 S; S is lower bound of Sv ;

S is upper bound of Sv ;
ð12Þ

X
8k2B

ckyk 6 G; ð4ÞX
8k�B

v ik P 1; 8i�A; ð5ÞX
8k�B

v ik 6 N; 8i�A; ð6Þ

rk�R; 8k�B; ð7Þ
v ik ¼ 0 or 1; 8i�A; k�B; ð8Þ
yk ¼ 0 or 1; 8k�B; ð9Þ
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X
8k2B

tijk 6 N; 8i; j 2 A; i – j; ð18Þ

tijk ¼ 0 or 1; 8i; j 2 A; i – j; k 2 B: ð19Þ

The multipliers u1,u2, . . . ,u7 are the vectors of u1
ij

n o
; u2

ij

n o
;

. . . ; u7
ijk

n o
, respectively. Besides Constraint (3) with multiplier

u4
ik

� �
, the other constraints are dulized such that the corresponding

multipliers, u1, u2, u3, u5, u6 and u7 are nonnegative.
The dual problem (LR1) is rewritten to Eq. (LR2), where the con-

stant terms are omitted.

ZD u1;u2;u3;u4;u6;u7� �
¼ minv Sv þ

X
8i2A

X
8j2A
i–j

u1
ij=Ss

� �
�
X
8i2A

X
8j2A;

i–j

u1
ij=Wijdij

� �8>><>>:
�K

X
8i2A

X
8j2A;

i–j

u1
ij

X
8k2B

v ik=wijdij

 !
� K

X
8i2A

X
8j2A;

i–j

u1
ij

X
8k2B

v jk=wijdij

 !

þ 2K
X
8i2A

X
8j2A;

i–j

u1
ij

X
8k2B

tijk=wijdij

 !
þ
X
8i2A

X
8k2B;
j–k

u2
ikdikv ik

�
X
8i2A

X
8k2B;
j–k

u2
ikrkyk þ

X
8i2A

X
8k2B;
i–k

u3
ikyk �

X
8i2A

X
8k2B;
i–k

u3
ikv ik

�
X
8i2A

X
8k2B;
i–k

u3
ikdik=rk

� �
þ
X
8i2A

X
8k2B;

i¼k

u4
ikv ik �

X
8i2A

X
8k2B;

i¼k

u4
ikyk

þ
X
8i2A

X
8j2A;

i–j

X
8k2B

u5
ijktijk �

X
8i2A

X
8j2A;

i–j

X
8k2B

u5
ijkv ik

þ
X
8i2A

X
8j2A;

ı–j

X
8k2B

u6
ijktijk �

X
8i2A

X
8j2A;

i–j

X
8k2B

u6
ijkv ik

þ
X
8i2A

X
8j2A;

i–j

X
8k2B

u7
ijkv ik þ

X
8i2A

X
8j2A;

i–j

X
8k2B

u7
ijkv jk

�
X
8i2A

X
8j2A;

i–j

X
8k2B

u7
ijktijk �

X
8i2A

X
8j2A;

i–j

X
8k2B

u7
ijk

9>>=>>; ðLR2Þ

where the constant term is

�
X
8i2A

X
8j2A;

i–j

u1
ij

.
wijdij

� �
�
X
8i2A

X
8j2A;

i–j

X
8k2B

u7
ijk

0BB@
1CCA:
5.3.2. Decomposition
According to Lagrangean relaxation approach, problem (LR2)

will be decomposed into four mutually independent and easily
solvable subproblems. Each sub-problem only involves one or
two decision variables and must be optimal solved. Note that,
the constant part is excluded from the objective function in the
subproblems but will be considered in the lower bound
computation.

Subproblem 1. For Sv

ZSUB1ðu1Þ ¼ minSv Sv þ
X
8i2A

X
8j2A;

i–j

u1
ij=Sv

� �0BB@
1CCA ðSUB1Þ

subject to:

S 6 Sv 6 S; S is lower bound of Sv ;

S is upper bound of Sv :
To optimal solve the subproblem, the right hand side of Eq.
(SUB1) will be differentiated respected to variable Sv. Let new
equation equals to zero and get the optimal solution of variable
Sv ; Sopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
8i2A

P
8j2A;

i–j
u1

ij

r
.

If S 6 Sopt 6 S then let ZSUB1 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
8i2A

P
8j2A;

i–j
u1

ij

r
. Otherwise, S

and S are substituted for Sv to get the upper and lower,

i:e: ZU
SUB1 u1

ij

� �
and ZL

SUB1 u1
ij

� �� �
, of ZSUB1. We can get optimal solu-

tion such that

ZSUB1ðu1Þ ¼ min Sþ
X
8i2A

X
8j2A;

i–j

u1
ij

.
S

� �0BB@
1CCA; Sþ

X
8i2A

X
8j2A;

i–j

u1
ij

.
S

� �0BB@
1CCA

8>><>>:
9>>=>>;:
Subproblem 2. For yk and rk

ZSUB2 u2 ;u3;u4
� �

¼minyk;rk �
X
8i2A

X
8k2B;
i–k

u2
ikrkyk þ

X
8i2A

X
8k2B;
i–k

u3
ikyk �

X
8i2A

X
8k2B;
i–k

ðu3
ikdik=rkÞ �

X
8i2A

X
8k2B;

i¼k

u4
ikyk

0B@
1CA

¼minyk;rk

X
8k2B

X
8i2A;
i–k

ð�u2
ikrk þu3

ikÞyk � ðu3
ikdik=rkÞ

� �
�
X
8i2A;
i¼k

u4
ikyk

0B@
1CA

ðSUB2Þ

subject to:X
8k2B

ckyk 6 G; ð4Þ

rk 2 R; 8k 2 B; ð7Þ

yk ¼ 0 or 1; 8i 2 A; k 2 B: ð9Þ
Subproblem 2 comprises jBj problems. For each sensor k, we let

bk(rk) represent the function (SUB2) while yk = 1.

bkðrkÞ ¼
X
8i2A;
i–k

�u2
ikrk þ u3

ik

� �
� u3

ikdik
	

rk
� �� �

�
X
8i2A;
i¼k

u4
ik:

Then, we calculate bk for each rk, which belongs to set R, as well
as find the optimal rk such that bk is the minimum denoted by
(bk)min. Next, from the set of unallocated sensors, we iteratively
choose sensor k and rk with the minimal (bk)min to be set. The cost
of sensor k must be accumulated. While adding the budget of sen-
sor k will exceed the total deployment cost G, the procedure must
be stopped.

Subproblem 3. For vik

ZSUB3 u1;u2;u3;u4;u5;u6;u7� �
¼min

v ik

�K
X
8i2A

X
8j2A;

i–j

u1
ij

X
8k2B

v ik

,
wijdij

 !0BB@
�K
X
8i2A

X
8j2A;i–j

u1
ij

X
8k2B

v jk

,
wijdij

 !
þ
X
8i2A

X
8k2B;i–k

u2
ikdikv ik

�
X
8i2A

X
8k2B;i–k

u3
ikv ikþ

X
8i2A

X
8k2B;

i¼k

u4
ikv ik�

X
8i2A

X
8j2A;

i–j

X
8k2B

u5
ijkv ik

�
X
8i2A

X
8j2A;i–j

X
8k2B

u6
ijkv jkþ

X
8i2A

X
8j2A;i–j

X
8k2B

u7
ijkv ikþ

X
8i2A

X
8j2A;i–j

X
8k2B

u7
ijkv jk

!
:

ðSUB3Þ
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To simplify Eq. (SUB3), variable vjk should be eliminated from
Eq. (SUB3). For each term with the variable vjk, index j substitutes
for i contrariwise. As well as the values of parameters
wji; dji; u1

ji; u5
jik; u6

jik are the same as wji; dji; u1
ji; u5

jik; u6
jik. Conse-

quently, the equivalent subproblem (SUB3a) replaces Eq. (SUB3).

ZSUB3 u1; u2;u3;u4;u5;u6;u7� �
¼ min

v ik

X
8i2A

X
8k2B

X
8j2A;

i–j

ð�2Ku1
ij=wijdij � u5

ijk � u6
ijk þ 2u7

ijkÞ

0BB@
þ
X
8k2B;
i–k

ðu2
ikdik � u3

ikÞ þ
X
8k2B;

i¼k

u4
ik

1CAv ik ðSUB3aÞ

subject to:X
8k2B

v ik P 1; 8i 2 A; ð5ÞX
8k2B

v ik 6 N; 8i 2 A; ð6Þ

v ik ¼ 0 or 1; 8i 2 A; k 2 B: ð8Þ
Subproblem 3 comprises jA � Bj problems. For each service

point i, we calculate the coefficient of each variable vik, and sort
them in non-decreasing order. Iteratively, if the minimal one of
the coefficient for vik is a positive number, we set the correspond-
ing vik to be zero. Otherwise, the corresponding vik is assigned to 1
under the number of sensors constraint. Additionally, for each ser-
vice point, the coverage constraint must be satisfied also. If no any
vik is 1 for service point i, the vik with the minimum coefficient will
be set.
Subproblem 4. For tijk

ZSUB4 u1; u5;u6;u7
� �
¼ min

tijk

2K
X
8i2A

X
8j2A;

i–j

u1
ij

X
8k2B

tijk

,
wijdij

 !
þ
X
8i2A

X
8j2A;

i–j

X
8k2B

u5
ijktijk

0BB@

þ
X
8i2A

X
8j2A;

i–j

X
8k2B

u6
ijktijk �

X
8i2A

X
8j2A;

i–j

X
8k2B

u7
ijktijk

1CCA
¼ min

tijk

X
8i2A

X
8j2A;

i–j

X
8k2B

2Ku1
ij

.
wijdij þ u5

ijk þ u6
ijk � u7

ijk

� �
tijk ðSUB4Þ

subject to:X
8k2B

tijk 6 N; 8i; j 2 A; i – j; ð18Þ

tijk ¼ 0 or 1; 8i; j 2 A; i – j; k 2 B: ð19Þ
Subproblem (SUB4) comprises jA � A � Bj problems. Subprob-

lem (SUB4) can be solved easily. First, the coefficient is calculated
for each tijk. Then we sort the coefficients in non-decreasing order.
If the coefficient for tijk is non-positive, tijk is assigned to 1. Other-
wise, tijk is zero. However, the number of tijk with one cannot ex-
ceed the maximal number of sensors.
5.3.3. Lower bound
In each iteration, after every subproblem is optimally solved,

the objective value of the dual problem, ZD, is a lower bound of ori-
ginal problem. It can be obtained by summarizing the objective
values of all subproblems and the constant part as the following
equation:
ZD u1;u2;u3;u4;u5;u6;u7� �
¼ ZSUB1 þ ZSUB2 þ ZSUB3 þ ZSUB4

þ �
X
8i2A

X
8j2A;

i–j

u1
ij

.
wijdij

� �
�
X
8i2A

X
8j2A;

i–j

X
8k2B

u7
ijk

0BB@
1CCA:

According to the weak Lagrangean duality theorem (Fisher,
1981, 1985), the optimal objective value of the dual problem
(LR), ZD(u1,u2,u3,u4,u5,u6,u7), is a lower bound on primal problem
(IP3), where ZIP3 is subject to (u1,u2,u3,u4,u5,u6,u7) P 0. Therefore,
we can obtain the lower bound by

ZD ¼ max
u1 ;u2 ;u3 ;u4 ;u5 ;u6 ;u7ð ÞP0

ZD u1;u2;u3;u4;u5;u6;u7� �
: ðD1Þ

Several methods can be used for solving Eq. (D1) to get the
highest lower bound. One of the most popular methods is the sub-
gradient method. Let a (jAj2 + jAkBj + jAkBj + jAkBj + jAj2jBj + jAj2jBj +
jAj2jBj) vector, g represents a subgradient of ZD(u1,u2,u3,u4,

u5,u6,u7). We denote p ¼ u1
ij;u

2
ik;u

3
ik;u

4
ik;u

5
ijk;u

6
ijk;

�
u7

ijkÞ as the vector

of Lagrangean multipliers with respect to relaxed constraints. In
iteration m of subgradient optimization procedure, the multiplier
pm is updated by pm+1 = pm + nmgm.

The step size is nm determined by nm ¼ k Z�IP3 � ZDðpmÞ
� �	

kgmk2,
where Z�IP3 represents an upper bound on the primal objective va-
lue, obtained by applying a heuristic to (IP3), and k is a scalar sat-
isfying 0 6 k 6 2.
5.4. Getting primal feasible solutions

After optimally solving each Lagrangean relaxation problem, a
set of decision variables can be found. Since some constraints are
relaxed, the solutions of Lagrangean relaxation might be infeasible
for the primal problem. Hence, an efficient heuristic algorithm
which adjusts the dual solutions to obtain the feasible solutions
for the primal problem (IP3) be developed as follows. By increasing
the number of iterations, the better primal feasible solution is an
upper bound (UB) on the primal problem (IP3), while the dual
problem provides the lower bound (LB) of the primal problem
(IP3).

Step 1: Initialize the decision variables, yk, vik, and rk.>
Step 1.1: Before the fifth iteration, initial decision vari-

ables yk are determined by sub-problem
(SUB2) on Lagrangean relaxation problem. For
each sensor, the five recent history solutions
are recorded. After the fifth iteration, we can
randomly determine whether decision variables
yk should be one by the placement probability
for the sensor k in history record.

Step 1.2: Check Constraints (1)–(3), for each sensor k. For
each service point i, let vik = 0 if dik is more than
the maximal candidate radius. Add sensor k if
vik = 1 and dik is less than the maximal candidate
radius, for each service point i.

Step 1.3: Determine the radius rk if sensor k is allocated.
For each sensor k, find the farthest distance
between sensor k and the service points with
vik = 1 to determine the radius rk.

Step 1.4: The decision variables vik can be obtained by the
decision variables yk.

Step 2: To satisfy the coverage and cost constraint, the sensors
might be added, deleted or changed the radius.
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Fig. 5. The best-found objective values for various set of sensing radius and
differential QoS.

Table 3
The levels of QoS and their ranges of ZIP3 in the scenario for differential QoS.

Level of QoS ZIP3 Notes

Level 1 ZIP3 P 100 ZIP3 P wk

Level 2 100 > ZIP3 P 5 wh > ZIP3 P wm

Level 3 5 > ZIP3 P 0.1 wm > ZIP3 P wl

Level 4 ZIP3 < 0.1 ZIP3 < w1
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Step 2.1: If the coverage constraint is violated, ‘‘Change Radius” or
‘‘Add Sensor” procedure will be executed. Randomly
select a sensor if the increase of radius for the sensor
can improve coverage, the radius will be changed. If
the operation of change radius is not suitable, the other
operation, ‘‘Add Sensor”, can be tried. The sensor that
can cover the most uncovered service points will be
added with a proper radius until the coverage constraint
is satisfied.

Step 2.2: If the budget constraint is violated, ‘‘Delete Sensor” pro-
cedure can be applied. Remove a sensor away from the
sensor field randomly, if the coverage of the sensor field
is not changed. The operation is executed until the bud-
get constraint is satisfied.

Step 2.3: Running the previous two steps until both the coverage
and budget constraint are satisfied.

Step 3: For each sensor, the operations ‘‘Change Position” and
‘‘Modify Radius” are tried in order to improve the discrim-
ination resolution.

6. Computational results

Three sets of experiments were conducted to evaluate the per-
formance of the proposed algorithm under various settings for the
amount of resources, fixed/adjustable sensing radius, differential/
uniform QoS of positioning, the placement limitations, and size
of sensing field. The proposed LR heuristic was coded in C in the
Microsoft Visual C++ 6.0 development environment. All the exper-
iments were performed on a Pentium IV-3.0 GHz PC running
Microsoft Windows XP Pro. As well as the performance metrics
were assessed in terms of the solution quality and computation
time.

6.1. Experiment I

The first experiment was designed to observe the solution qual-
ities of the proposed algorithm. In this experiment, the amount of
resources, the sensing radiuses were variables; as well as the
placement limitation and topography of sensing field are fixed.

The sensing field was a rectangular field divided into 10 � 15
service points and seven different ROIs shown as Fig. 2. The level
of QoS and discrimination priority for these ROIs are presented in
Section 3.2. The candidates of sensing-radius are between 1 and
8 units of length. The parameters about LR based algorithm in-
clude: 0 6 k 6 2, improvement counter is 40, and number of itera-
tions is 1500.

For obtaining the differential positioning accuracy according to
the requirements of ROIs, we let the set of discrimination weights be
{0.1,5,100} based on Proposition 1. The discrimination weights be-
tween any two service points have to be the highest weight,
wh = 100, while both service points are on ROI A or they are on dif-
ferent ROIs. For any two service points which both on ROIs B, C, D,
or E, their discrimination weights should be medium, wm = 5. The
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Fig. 4. The sensor density versus various fixed sensing radiuses.
weights between any two service points, which both are on ROI
F are set to the low weight, wl = 0.1.

Based on Proposition 2, we let parameter K be 20000. Addition-
ally, the diameter of the sensor field D, is 16 units of length.

Assume the sensor deployment budget of each location, ck, is
one, then the number of sensors corresponds to the deployment
budget, G. We define the sensor density

P
8k2Byk=G

� �
� 100% and it

replaces the amount of sensors to be observed in Fig. 4.
Fig. 4 shows the relationships between sensing radius and the

resource requirements (i.e. sensor density) for different levels of
QoS. The range of candidate sensing radiuses is from 1 to 8 units.
The marks, ‘‘Level 2 QoS” and ‘‘Level 3 QoS” represent Level 2
and Level 3 QoS requirements for the sensing field are satisfied,
as listed in Table 1. And the traditional scheme without differential
positioning quality is marked by ‘‘Uniform QoS”, which means that
all service points in the sensing field have the same positioning pri-
ority. Fig. 4 demonstrates that the sensor density requirements for
the sensor network deployment depend strongly on the sensing ra-
dius of sensors. The results indicate that adopting sensors with
medium size of sensing radius (i.e. about 5 units in the case) yields
the lowest deployment density.

Fig. 5 shows that the best-found objective values of the differ-
ential QoS for various sets of sensing radius and the number of sen-
sors. The candidate sets of the sensing radius for sensors in the
experiment were {4,5,6}, {3,4,5,6,7}, and {1,2,3,4,5,6,7,8}.
Table 3 lists the ranges of objective values, ZIP3, for the differential
QoS. These objective values are the weighted error distance and
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Fig. 6. Performance comparison between the uniform (U) and differential (D) QoS
services with adjustable radius, R = {rj3 6 r 6 7}.
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their corresponding level of positioning service providing by the
sensor network. Fig. 5 shows that the objective values of the three
candidate sets are very close. In spite of using any one of these can-
didate sets of sensing radius, while the amount of sensor nodes in-
crease to 26, the completely discriminated sensing field always can
be obtained.

For contrasting the differential QoS with traditional uniform
QoS of positioning, we design another experiment for uniform
QoS. Assume all of service points in the sensing field require the
same discrimination priority, so we let wij = 100 for all i, j. When
the objective values are less than 100, the sensing field is com-
pletely discriminated. Otherwise, the sensing field is discriminated
but the weighted error distances are ðZIP3=100Þ units of length.

Figs. 6 and 7 show the performance comparison between the
traditional uniform and differential QoS using fixed and adjustable
sensing radiuses, i.e. R = {5} and R = {rj3 6 r 6 7}. Both Figs. 6 and 7
indicate that the differential QoS has better objective values, i.e.
the lower weighted error distance, than traditional uniform QoS
while the number of deployed sensors was less than 26. It means
we need more sensor nodes to achieve Level 1 to Level 3 QoS with-
out the differential QoS deployment method. Since the traditional
uniform QoS deployment method cannot guarantee effectively
positioning priority for ROIs. In other words, the proposed differen-
tial QoS deployment method got higher or equal level of QoS than
traditional uniform QoS under the same number of sensor nodes.
The results confirm the effectiveness of the proposed framework
and algorithm.
Fig. 11. The best-found objective values for various set of adjustable sensing radius.
(Differential QoS, placement limitations.)

10000
6.2. Experiment II

The second experiment was designed to observe the solution
qualities of the proposed algorithm under placement limitations.
As Fig. 8 shown, sensors could not be placed at the 35 (gray) grid
points on the right-upper corner of the topography. So, sensing
radiuses should be larger than 4 to satisfy the coverage constraint
while we adopt fixed uniform sensing radiuses. Let the deployment
cost of the location with placement limitation be infinitive and the
other grid points still be one. Besides, the scenario for this experi-
ment was the same as that in Experiment I.
Fig. 8. The scenario with placement limitations: locations in the gray region are
very difficult for placing sensors.
In Figs. 9–11, we have two observations for differential QoS for
positioning with placement limitations. As Fig. 9 shown, in spite of
what level of QoS is considered, the minimal required sensor
densities are depend strongly on the selection of sensing radiuses
when all sensors have the same sensing radius. And the larger
sensing radiuses still donot have advantages in this sensor
deployment problem. From Figs. 4 and 9, we found the decisions
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Fig. 12. The computation time of the LR based algorithm.



Fig. 13. The sensor deployment in a 13 � 13 sensor field. (a) By CIQ approach (79 sensors). (b) By the proposed LR approach (68 sensors).
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of sensing radiuses are depend on placement limitations while all
sensors have uniform sensing radius. Moreover, Figs. 10 and 11
shown either traditional uniform or differential QoS, the different
sets of candidate sensing radius should obtain almost the same
objective values in the case of sensors with adjustable radiuses.
So, we can claim the proposed adjustable sensing radius and LR
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Fig. 14. Performance of the ID-CODE algorithm in the sensing field with 150 service
points.
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Fig. 15. Performance comparisons between ID_CODE_best and L
based algorithm is effective to address the sensor deployment
problem with placement limitations.

6.3. Experiment III

In Experiment III, sensor fields 50, 100, 150, and 200 service
points were used to evaluate the scalability of the proposed algo-
rithm. The solution space increase exponentially as the sensor field
size increased linearly. Therefore, this study observes the variation
of computation time and solution quality while the problem size
increases.

The parameters about LR based algorithm include: 0 < k 6 2 and
improvement counter is 40. The number of iteration for field size
50, 100, 150, and 200 are 500, 1000, 1500, and 1500, respectively.

Fig. 12 presents the computation time of the proposed algo-
rithm, where jRj is cardinality of set of candidate sensing radius.
The solution space of the proposed problem exhibited steep
growth when jRj increased slightly. However, as shown in Fig. 12,
the computation time did not increase significantly when jRj was
increased. These findings clearly indicate that the proposed algo-
rithm is scalable in terms of the candidate sensing-radius.
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In contrast, the computation time only increased by a factor of
about 17 when the number of service points grew from 50 to 100,
and by about 15 times as the number of service point increased
from 100 to 200. Results of this experiment indicate that the com-
putation time does not increase exponentially as the solution space
grows exponentially. Therefore, the proposed algorithm is also
scalable in computation time.
7. Performance comparisons

In this section, we compare the proposed algorithms with pre-
vious approaches. Chakrabarty et al. applied the coding theory to
solve the target location problem in sensor networks (Chakrabarty
et al., 2002). In the paper, we denote the placement method pro-
posed by Chakrabarty et al. as ‘‘CIQ approach”. Both simplicity
and quickness are main advantages of CIQ deployment method.

Ray et al. applied the identifying code to solve the target loca-
tion problem in sensor networks (Ray et al., 2004; Ray et al.,
2003). They proposed the ‘‘ID-CODE” sensor placement algorithm,
and designed three visiting orders: random, ascending, and
descending orders.

However, CIQ approach is difficult for irregular sensing fields; as
well as it ignores the sensor field boundary effect for deployments.
In addition, both CIQ and ID-CODE approaches cannot directly use
adjustable sensing radiuses to deploy sensors for the proposed tar-
get positioning problem. These approaches donot also take differ-
ential positioning qualities into account. Hence, the proposed LR
based approach addresses these difficulties.

Fig. 13(a) shows a 13 � 13 sensor field which is deployed 65
sensors by CIQ approach (Chakrabarty et al., 2002). To solve the
boundary problem, we deploy 14 extra sensors (total 79 sensors)
for satisfying the completely discrimination constraint. In the same
scenario, i.e. 13 � 13 sensor field and traditional uniform position-
ing priority, we also use sensors with sensing radius one to deploy
a completely discriminated sensing field by LR algorithm. The re-
sults are illustrated as Fig. 13(b); only 68 sensors are needed. We
can declare that our approach is more flexible for applications
and effective in terms of deployment cost.

For comparing the proposed LR based algorithms with ID-CODE
approach, we design a set of experiments considering traditional
uniform QoS. Due to the results that were obtained by the random
order of the ID-CODE approach highly depend on probability. It
should result in either a larger deviation or too much time con-
sumption to obtain a statistical or the best result. Hence, as
Fig. 14 shown, in each experiment, we only adopt the ascending
and descending orders of the ID-CODE algorithm. Furthermore,
we take the best results of these two visiting orders and denote
it by ‘‘ID_CODE_best” as a benchmark. The curve denoted ‘‘Lower
Bound” is a modified version of lower bound according to Theo-
rem 1-(2) and 1-(3) in Karpovsky et al. (1998).

Fig. 15(a)–(d) illustrate performance comparisons between ID-
CODE_best and LR_1 algorithms under various size of sensing
fields, i.e. 50, 100, 150, and 200 service points, respectively. We
find that LR based algorithm outperforms ID_CODE_best in terms
of deployment cost, i.e. sensor density.
8. Conclusions

In this paper, we propose a generic framework for the sensor
deployment problem to support the differential quality of position-
ing services for different ROIs in sensing fields. We use weighted
error distance as the criteria to measure positioning accuracy, i.e.
quality of positioning.

Under the budget, complete coverage, and QoS priority con-
straints, the problem is modeled as a nonlinear integer program-
ming problem where the objective function is to minimize the
maximum weighted error distance. Besides the sensor’s locations,
we consider the sensing radius of each sensor as decision variables.
Next, we develop LR based algorithm to cope with the NP-com-
plete problem. Moreover, due to the results of the performance
evaluations and comparisons, we make a summary as follows.

First, the proposed framework has flexibility to support differ-
ential QoS for positioning. The level of QoS obtained by the pro-
posed framework always is higher than or equivalent to
traditional uniform QoS using the same number of sensor nodes.

Second, deciding sensing radiuses depends on topographies and
placement limitations of sensing fields while all sensors have uni-
form sensing radius. But, by adjustable sensing radius, the pro-
posed algorithm effectively gets well solution quality. The
performance of the proposed algorithm is almost independent of
the set of candidate radius.

Third, the proposed algorithms are scalable in terms of the car-
dinality of set for candidate sensing radius and the number of ser-
vice points in sensing fields.

Hence we state the proposed framework is effective for deploy-
ing a sensor network to support differential QoS for target posi-
tioning with placement limitations. Moreover, the proposed
Lagrangean based algorithm is efficient and scalable. Obviously,
the paper contributes to sensor deployment problem for target
positioning services.
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Appendix A. The proofs of the propositions

Proposition 1. If the diameter of the sensing field is D, and the
discrimination weights are w1,w2, . . . ,wh and w1 < w2 < � � � < wh. Then
wiþ1 > Dwi for any two adjacent weights wi and wi+1.
Proof. Some groups of service points all have the same power
code. Among these groups, the pair of service points with the high-
est discrimination weight and the furthest distance has the maxi-
mum weighted error distance (the worst positioning accuracy).
In this sensor network, the weighted error distance S of any pair
of service points, which has discrimination weight wi+1 and one
unit length apart, should be smaller than DWi. h
Proposition 2. If the diameter of sensing field is D; the detection
range is r, and the discrimination weights are w1,w2, . . . ,wh, and
w1 < w2 < � � � < wh, then the constant K must satisfy constraints as
follows:

If 2r P D; then w1 > whD=ð1þ KÞ:
If 2r < D; then w1 > max ðwh � 2rÞ=ð1þ KÞ; ðwh � DÞ=ð1þ 2KÞ

� �
:

Proof. The minimum value of weighted error distance for indistin-
guishable service points is w1, which must be greater than the
weighted error distance for each pair of discriminated service

points, wijdij 1þ K
P

kðv ik � v jkÞ2
� �.

. We first discuss the maxi-

mum of wijdij 1þ K
P

kðv ik � v jkÞ2
� �.

.

For 2r P D:
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The furthest distance between any pair of discriminated service
points is D. The minimal Hamming distance between two discrim-
inated power codes is 1. Hence, the maximum value of

wijdij 1þ K
P

kðv ik � v jkÞ2
� �.

is wijD=ð1þ KÞ. Therefore, the con-

straint, w1 > whD=ð1þ KÞ, must be satisfied for K.
For 2r < D:
The two discriminated service points with furthest distance D

cannot be covered with the same sensors while the detection
radius of the sensor is less than the diameter of the sensing field.
Hence, the minimal Hamming distance between their power codes

is 2, and wijdij 1þ K
P

kðv ik � v jkÞ2
� �.

is whD=ð1þ 2KÞ.
Conversely, to consider the case of two discriminated service

points covered by at least one sensor, the further distance between
them is 2r, and the minimal Hamming distance between their
power codes is 1. In this case, the value of

wijdij= 1þ K
P

kðv ik � v jkÞ2
� �

. is wh � 2r=ð1þ KÞ.
Therefore, both whD=ð1þ 2KÞ and wh � 2r=ð1þ KÞ have to be

less than w1. h
Proposition 3. Theoretical upper bound of Sv denoted by S is wh
~d,

where denotes the highest discrimination weight, and ~d (i.e.
~d ¼ minfD;2rg) is the minimal value of the diameter of a sensor field
(D) and the maximum sensing range of sensors (2r).
Proof. If the sensor field is not completely discriminable, then a
pair of service points on the field that has the farthest distance ~d
and the same power vectors can be found. The value of ~d is not
greater than the diameter of the field and the maximum detection
range of the sensors. Hence, S is bounded by wh

~d. h
Proposition 4. Theoretical lower bound of Sv denoted by S is
wl=ð1þ bd � KÞ, where wl is the lowest discrimination weight, and bd
represents the maximal possible Hamming distance of power vectors
for all service points. If n is the maximal number of sensors that can
cover a service point; as well as N denotes the number of sensor nodes
then bd ¼ minf2n;Ng.
Proof. If wij = wl and dij = 1, i–j, the numerator of Eq. (10) is the
minimum as well as

P
8k2Bðv ik � v jkÞ2 ¼ d̂; i–j, the denominator of

Eq. (10) is the maximum, then the theoretical lower bound of Sv
can be obtained. It occurs when the sensor field is completely dis-
criminable. There are the service points i and j with the lowest dis-
crimination weight wl. Concurrently, the power vectors of service
points i and j have the maximal possible Hamming distance, bd.
Hence, the lower bound S is wl=ð1þ bd � KÞ. h
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