
402 IEEE TRANSACTIONS ON BROADCASTING, VOL 44, NO 4. DECEMBER 1998

Optimal Real-time Admission Control Algorithms
for the Video-On-Demand (VOD) Service

Frank Yeong-Sung Lin
Department of Information Management

National Taiwan University
Taipei, Taiwan, R.O.C.

Abstract- In order to meet the Quality-Of-Service (QOS)
requirements of the VOD (Video-On-Demand) service, and,
on the other hand, to maximize the system throughput (rev-
enue), it is essential that the admission control algorithm
be carefully designed. In this paper, two new types of ad-
mission control schemes for the VOD service are proposed.
They are the Enhanced Strict Admission Control (ESAC)
and the Probabilistic Admission Control (PAC). In the
ESAC schemes, we propose t o use more statistics (of small
amount and easily pre-calculated) than the peak frame size
of the stored video information to strictly guarantee the
QOS requirement and t o achieve potentially much higher
throughput. In the PAC schemes, we propose t o use simi-
lar statistics as used in the ESAC schemes t o achieve even
higher throughput at the cost of some small and control-
lable likelihood of lost/overdue data. The admission con-
trol problems are formulated as feasibility problems where
different systems of simultaneous equations are considered.
For each admission control scheme, if the corresponding sys-
tem of simultaneous equations has a feasible solution, then
admit the call request; otherwise, reject the call. Special
structures of the systems are identified so as to facilitate
the development of optimal real-time admission control al-
gorithms. Efficient optimal algorithms are also proposed t o
calculate the minimal buffer requirement for a given per-
formance objective.

I. INTRODUCTION
The Video-On-Demand (VOD) service [lo] , [20] has be-

come feasible due to the availability of a number of en-
ahlirig technologies, such as MPEG (Moving Picture Ex-
perts Group) [3], ATM (Asynchronous Transfer Mode) [4],
[5], ADSL (Asymmetric Digital Subscribers Line) [6], [14]
and HFC (Hybrid Fiber-Coax) with the maturity of two
physical and medium access control protocol standards, i.e.
IEEE 802.14 [7] and MCNS (Multimedia Cable Network
System) [8]. The VOD service can provide viewers with the
same quality and control as those of the VCR playback of
rental programs but with a lot more flexibility and con-
venience. Therefore, many information service providers,
network service providers, and Customer Premises Equip-
ment (CPE) vendors are actively in the process of realizing
t,he VOD service.

A number of possible system architectures to support the
VOD service have been proposed [a], [lo] , [ll], [la] , [13],
1171, [20], [21], [24]. It is commonly agreed that a high-
speed backbone and broadband distribution/community
networks will be used to transport video streams. More
importantly, it is likely that video information is stored
digitally, in a compressed form to save storage space and
to reduce transport cost. This compression/decompression
process typically requires transporting variable-bit-rate

0018-9316/98$1000 0 1998 IEEE
Puhlirher Item Identitier S 00 18-93 I6(98)09550-X

video streams, which is assumed the case in this paper
and would make the development of efficient and effective
admission control schemes more difficult.

A key challenge involved in providing the VOD service is
the need to store a huge amount of video data in an archive
such that each video stream can be accessed and transmit-
ted to the display device in real time. Various video server
architectures [1], [16], [18], [19], [22] have been proposed,
e.g., the disk array architecture, the juke box and disk ar-
ray architecture, and the distributed architecture.

In a video server with the disk array architecture, video
information is stored in a high-speed disk array. When a
video stream is to be played, it will be first brought into a
buffer (e.g. RAM) and then sent to the viewer through a
communication facility. In a video server with the juke box
and disk array architecture, two types of storage are used.
The entirety of the video information is stored in "juke
boxes" - large and slower devices such as optical disks.
Whereas, frequently accessed video information (usually a
small portion of the information stored in the juke box) is
stored in high-speed disk arrays to reduce the access time.
When a miss on the disk array occurs, two cases are pos-
sible. In the first case, the requested video information
is first brought from the juke box into the disk array and
then sent to the buffer for transmission. In the second
case, the requested video information is brought directly
into the buffer and transmitted to the viewer. In a video
server with a distributed architecture, video information
are distributed among a number of servers which cooper-
atively support the service. In this paper, we consider the
admission control problem under the disk array architec-
ture. The result can be extended for other video server
architectures.

For continuous retrieval of video data, it is essential that
video information be available at the display device by the
time of its playback. We refer to this as the continuity re-
quirement. In order to satisfy the continuity requirement
for each active video stream, admission control schemes
should be carefully designed. Two types of admission con-
trol schemes have been proposed. They are strict admis-
sion control schemes [1], [16], [23] and predictive admission
control schemes [2], [15]. The objective of strict admis-
sion control schemes is to guarantee that the continuity
requirement be strictly satisfied by allocating system re-
sources based on the worst-case scenario (Le. considering
the peak frame size), Whereas, predictive admission con-

403

trol schemes attempt to reliably predict the future behav-
ior of the system based upon its measured past behavior.
Strict admission control schemes have the advantage of
simplicity at the cost of low throughput. This can easily
be understood by the example that the peak to mean ratio
of coded frame sizes is 12 for the Star Wars film using the
MPEG coding scheme [9]. If the worst-case engineering
approach is taken, the system resources may be overly un-
derutilized. To improve the throughput of the strict admis-
sion control schemes, predictive admission control schemes
allow a given bound on the data loss/overdue probability
and use measurements to estimate the expected behavior
of the system. However, to collect real-time measurements
incurs system overhead. In addition, the dynamics of video
traffic typically make it insufficient to make admission con-
trol decisions based upon snapshot load conditions (it is
not guaranteed that the data loss/overdue probability for
each video stream be within the given bound).

In this paper, we consider two new types of admission
control schemes, i.e. the Enhanced Strict Admission Con-
trol (ESAC) algorithms and the Probabilistic Admission
Control (PAC) algorithms. The ESAC algorithms intend
to improve the throughput of the strict admission control
schemes by employing more and easily pre-calculated in-
formation than the peak frame size from the stored video
information. Whereas, the PAC algorithms intend to re-
duce t he on-line overhead incurred in the predictive admis-
sion control algorithms by using statistics available from
analyzing (also off-line) the stored video information. In
addition, unlike predictive admission control algorithms,
the PAC algorithms guarantee that the data loss/overdue
probability for each video stream be within a pre-specified
bound.

In this paper we also consider the buffer management
problem, where for a given system load the minimum
amount of buffer requirement is calculated to serve such
load. The buffer management algorithm can be applied
either in the system design phase to calculate the mini-
mum buffer requirement or on a real-time basis for dy-
namic buffer management.

The basic approach taken in this paper is to formu-
late each of the admission control problems as the fea-
sibility problem of a discrete system, and to formulate
the buffer management problems as combinatorial opti-
mization problems. Special properties of such systems are
identified. Those properties facilitate efficient optimal al-
gorithms so that real-time applications can be supported.

The remainder of this paper is organized as follows. In
Sections 2 and 3, the ESAC algorithms and the PAC algo-
rithms arc presented, respectively. Section 4 summarizes
this paper.

11. T H E ESAC ALGORITHMS

Assume that the disk scheduler services all video streams
in a round-robin fashion. Refer to a cycle as the time of
such a round. Let B be the size of the available buffer in
terms of blocks. Let K be the block transfer rate from the

disk array to the buffer. Let I be the set of the new and
the existing video streams, where the admission control of
the new video stream(s) is to be determined. Let A be
the worst-case disk array access overhead (including seek
time and latency) for all the streams in I in one cycle.
For demonstration purposes, it is assumed that contigu-
ous block allocation policies are adopted. Under such an
assumption, A can easily be calculated from the worst-
case seek time, the worst-case latency and the number
of streams considered, which is independent of the num-
ber of blocks fetched for each stream in a cycle. In the
cases where restricted contiguous block allocation policies
or random block allocation policies are adopted, the prob-
lem formulation and algorithms could be modified accord-
ingly.

Let Tij be j if in each cycle j blocks of data for stream
i is fetched from the disk array to the buffer and 0 oth-
erwise. Let Ji be the set of po:;sible numbers of blocks
fetched in one cycle for stream i E I. In the appendix,
a method is proposed to help better select Ji. For each
video stream a , pre-calculate dij which is the worst-case
(minimum) playback duration for stream i when exactly j
blocks are fetched from the disk in each cycle. Note that
di, can be calculated easily from the stored video data by
using the timestamps stored with the data and the follow-
ing two possible methods. If the number of blocks fetched
in each cycle for each admitted stream is kept the same for
the entire duration of the call, then a "fixed-displacement
window" with width j can be used to calculate dt,. On
the other hand, if the number of blocks fetched in one cy-
cle for each admitted call may change with time (upon
call admission and/or termination), then a "running win-
dow" with width j can be used to calculate di,. It is clear
that for given i and j , the value of di j calculated by us-
ing the "fixed-displacement window" is no less than that
calculated by using the "running window". Note also that
d i j needs to be calculated only once (off-line) and can be
stored at the beginning of each video stream for admis-
sion control purposes. One exarnple is give below to il-
lustrate how di, is calculated. Consider a video stream i
which is stored in a sequence a data blocks of a fixed size.
The playback duration (in units of time) for each of the
data blocks is assumed to be 1, 2 , 3, 3, 2, 1, 1, 2, 3. 3.
2, 1, 1, 2, 3, 3, 2 , 1, ..., respectively and in that order.
W h e n j = 1, d i j = min{l,2,3,3,2,1,1,2,3,3,2,1, ... } =
1 for both window schemes. Wh.en j = 2 , for the fixed-
displacement window scheme, di, = min{ 3 ,6 ,3 .3 ,6 ,3 , . . .}
= 3, while for the running window scheme, d,, =
min{3,5,6,5,3,2,3,5,6,5,3, ...} == 2. It can also be eas-
ily verified that when j = 3, di j equals 6 and 4 for the
fixed-displacement and the running window schemes, re-
spectively.

Let gi be the continuous function of playback duration
with respect to the number of blocks fetched in each cy-
cle time for stream i, constructed by using di, and linear
interpolation (to connect each pair of points (j , d i j) and
(j + l,di(j+ll) with a segment). The construction of gi as

404

a continuous function is principally for the purpose of il-
lustrating a number of properties to be introduced later,
where linear programming relaxation of the integer de-
cision variables are considered. For the running window
scheme, it is clear that each gi is monotonically increasing.
A more strong result is given below.

P r o p e r t y 1: For the running window scheme, gi(a + b) 2
si(.) + g i (b) VU, b E N , i E I .

Proof: Consider any (a + b) contiguous data blocks
for stream i , whose playback duration is denoted by
t l , t z , t 3 > . . . , ta+b without loss of generality. Then,

a+b

F t k = e t k + t k

k = l k = l k=a+l

2 Si(.) +
The above relation holds for any choice of (u + b) contigu-
ous data blocks for stream i , and therefore also holds for
the minimum among all possible choices, which is equal to
gi(a 4- b) . This completes the proof.

This property can be generalized to the case where the
domain is the set of non-negative real numbers. The re-
sult implies that it is more effective (from the stand point
of the average playback duration per data block) to fetch
more data blocks in each cycle time for each stream, and
will be used to show another useful property for algorithm
development.

We formulate the admission control problem as the fea-
sibility problem of System P1. If System P1 has a feasible
solution, then admit the new call(s); otherwise, reject the
call(s) .

System P I :
m

A + x 1% 5 gi (CjEJ ,Ti j) 'dz E I (1)
kEI.7EJk

7: z: Ti.7 c B (2)
a E I j E J ,

1 'da E I (3) =

3 € J ,

T.. Z 3 = 0 or j Vi E I , j E J,. (4)

The left-hand-side of Constraint (1) is the worst-case cy-
cle time. Constraint (1) requires that no starvation occur
(the continuity requirement be satisfied) for every stream.
Constraint (2) requires that the total amount of buffer al-
located to the admitted call(s) not exceed a given value B.
Constraints (3) and (4) require that for each stream i E I
exactly one particular number of blocks (chosen from J i)
are fetched from the disk array in one cycle.

Despite of the integrality constraint (4), the following
polynomial-time algorithm can be applied to determine the
feasibility of System P1.

Algori thm A:
1. Set H to be a lower bound on the minimum buffer

requirement for System P1 to be feasible (e.g. 0 or a

possibly higher value by using the result provided in
the appendix).

2. If H is greater than B, then report "System P1 is
infeasible" and stop.

3 . Fix the term CjEJl, Ti3 on the left-hand-side of
Constraint (1) to be H .

4. Find for each i E I the minimum (single) j E Ji such
that A + H / K 5 gi(C,€ J , Tij). Denote the solution

by {Ti'?}.
5. Calculate HI = CzEl C,, J , Ti3
6. If H' 5 H , then report "System P1 is feasible" and

stop: otherwise, increase H by 1 and go to Step 2.

This algorithm exhaustively selects all possible values
of B that satisfy Constraint (2) and examines whether
Constraints (l), (3) and (4) can be satisfied at the same
time. The above version of Algorithm A starts from a
lower bound on the minimum buffer requirement and stops
when a feasible buffer requirement is reached (if B is suf-
ficiently large to make System P1 feasible). This provides
an additional function to determine the minimum buffer
requirement to service the entire offered load.

Although Algorithm A is a polynomial-time algorithm,
for large B many iterations may be required to determine
the feasibility of System P1, which may exclude Algorithm
A from real-time applications. The following special prop-
erties of System P1 are identified, which facilitate a much
more efficient heuristic procedure than Algorithm A to de-
termine the feasibility of System PI.

P r o p e r t y 2: If the running window scheme is adopted
and there exists a feasible solution to the linear program-
ming relaxation of System P1, denoted by {Tz3}, such that
CiEI Ti3 = B 5 B, then there exists a feasible so-
lution to the following system:

Sys t em P2:

(a) , (3), 0 5 Tij 5 j 'dz E I , j E Ji and

(5)

Proof: From the assumption, there exists a feasible solu-
tion to the following system:

Sys t em P3:

(2) , (3) , 0 5 Tt3 5 j 'dz E I, j E J , and

Also from the assumption

Since B 5
that

B from the assumption, Equation (7) implies

405

Multiplying both sides of Equation (8) by BIB yields

Since B / B 2 1 and from the continuous version of Prop-
erty 1, the right-hand-side of Equation (9) is less than or
equal to .ql (5 E, E J , TiJ 1. Consequently,

Equation (10) implies that the solution where for each
stream i the buffer requirement is CjEJ , TiJ satisfies
Constraint (5). In addition, the corresponding overall
buffer requirement of this solution is equal to B, which
makes Constraint (2) satisfied. Therefore, this solution is
also feasible to System P2. Consequently, if the linear pro-
gramming relaxation of System P1 is feasible then System
P2 is feasible. This completes the proof.

It is also clear that if System P2 is feasible, then the
linear programming relaxation of System P1 is feasible
(Constraint (5) is more restricted than the corresponding
constraint in the linear programming relaxation of System
P1). Based upon this fact and Property 2, the following
property is identified.

Property 3: When the running window scheme is
adopted, the feasibility of the linear programming relax-
ation of System P I can be determined by examining the
feasibility of System P2. If System P2 is feasible then the
linear programming relaxation of System P1 is feasible;
otherwise, the linear programming relaxation of System
P1 and also System P1 itself are infeasible.

The feasibility of System P2 can be determined in an
efficient way. First, since for every i E I, gi is a monotoni-
cally increasing function (for the running window scheme),
one can easily use standard line search techniques to cal-
culate the minimum number of data blocks required for
each stream i such that Constraint (5) is satisfied. If such
calculated total buffer requirement is no greater than B
then System P2 is feasible; otherwise, System P2 is infea-
sible. I[t is clear that this procedure exactly determines the
feasibility of System P2. The following heuristic admission
control algorithm is then developed accordingly.

Algorithm ESAC-HEU:
1. Find for each i t 1 the minimum (single) j E Ji such

that A + B / K 5 gi(CjEJ, Tij). Denote the solution

by K; }.
2. Calculate B’ = ziEI c ~ ~ ~ , T%>.
3. If B’ 5 B, then admit the call(s); otherwise, reject

the .,ll(s).

This approach has the following advantages. First, it is
simple. Compared with Algorithm A, Algorithm ESAC-
HEU requires 1 iteration rather than in the worst case B
iterations. Second, when a new call arrives, only one single

inequality (in Step 1) needs to be examined so as to de-
termine whether sufficient buffer is available to admit this
call. Third, the buffer allocation for existing streams does
not need to be changed when a new call is admitted. In ad-
dition, when a call terminates, the buffer allocated to this
stream is simply freed. The number of blocks fetched in
each cycle and the buffer allocation for each of the remain-
ing streams do not need to be changed (still feasible). This
property allows the fixed-displacement window scheme to
calculate { dij }, which as explained previously would po-
tentially result in better perforniance than the running
window scheme that shall be adopted when the number
of data blocks fetched in each cycle time may change.
However, when the fixed-displacement window scheme is
adopted, sequential search rather than more efficient line
search techniques shall be used to calculate the minimum
buffer requirement for each stream in Step 1 of Algorithm
ESAC-HEU. This is because gi may not be monotonically
increasing when the fixed-displacement window schemz is
used.

Under some circumstances, it is’ desired to minimize the
buffer requirement. As discussed earlier, a variation of Al-
gorithm A can be applied for this purpose. However, a
significant number of iterations may be needed to find the
minimum buffer required. The foll.owing property provides
a more efficient way to calculate the minimum buffer r e
quirement and forms a major part of a far more efficient
optimal admission control algorithm than Algorithm A.

Property 4: Assume System P1 is infeasible for a given
value of B, denoted by B. Let B* be the minimum value
of B such that System P1 is feasible. Solve the following
problem.

Problem P4:
min T,, (11)

J E J ,

subject to:

Denote the optimal solution to P:roblem P4 by {Ti>}. Let
B’ be CiEI CjGJ, Tij. Then, B <: B’ 5 B*.

Proof: We first prove that B’ 5 B*. Let {T;} be an
optimal solution associated with the minimal buffcr size
B* (EiEI CjE J % TG = B*). Then the following equation
holds. --

And for each i t I , it is clear t,hat the T i 3 with the smallest
index j such that (13) is satisfied is set to j and that all
the other Tij’s are set to zero. Since B < B* from the
assumption, for each i E I , if Tij with the smallest index j
such that (13) is satisfied is set to j and all the other T“’s

406

are set to zero? then the calculated buffer requirement is
no gre?ter than B*. We next prove that B < B . Assume
t,hat B 2 B . Then B is feasible, which contradicts the
assumption. This completes the proof.

Property 4 implies that if an infeasible value of B is cho-
sen, then the substitution of this value into Problem P4 will
lead to a larger total buffer requirement (or the same, only
if B is optimal). This total buffer requirement is either in-
feasible or optimal. Due to such strict monotonicity before
the minimum buffer requirement is calculated, the buffer
requirement will converge from below to the optimal value
using repeated substitution.

Based upon Property 4, an optimal algorithm to find the
minimum buffer requirement is developed and presented
below.

Algori thm ESAC-BM:

1. Choose a lower bound on the minimum buffer require-
ment as the initial value for B (e.g. using the result
in the appendix).

2. Find for each i E I the minimum (single) j E Ji such
that A + B / K 5 gi(CjtJ, T,,7). Denote the solution

by i t ; 1.
3 . Calculate B’ = xiEI zJtJ, T:. 2 3 ’

4. If B’ = B, then stop; otherwise, increase the value of
B to B’ and go to Step 2.

From the strict monotonicity implied by Property 4, the
buffer size strictly increases iteration by iteration if not
optimal, and will converge to an optimal solution. Com-
pared with Algorithm A, to calculate the minimum buffer
requirement B”, Algorithm ESAC-BM typically requires
much fewer iterations than Algorithm A due to a hopping
search strategy rather than a sequential one.

The above result immediately leads to the following op-
timal real-time admission control algorithm.

Algori thm ESAC-OPT:

1. Apply Algorithm ESAC-BM to calculate the mini-
mum buffer requirement B* .

2. If B* is no greater than the size of the available
buffer (B), then admit the call(s); otherwise, reject
the call(s).

Note that to improve the performance, Step 1 of Algo-
rithm ESAC-OPT can be modified in such a way that if
B’ > B at any intermediate stage of applying Algorithm
ESAC-BM, then reject the call(s) and stop.

Algorithm ESAC-OPT is optimal in the sense that if and
only if System P1 is feasible, the call(s) will be admitted.
As Algorithm ESAC-BM is the major part of Algorithm
ESAC-OPT, Algorithm ESAC-OPT is more efficient than
Algorithm A as discussed previously.

111. T H E PAC ALGORITHMS

As explained previously, the objective of the PAC ap-
proach is (i) to reduce the on-line overhead and (ii) to
increase the system throughput at the cost of a small

and controllable (and strictly satisfied) overdue probabil-
ity. Let ti, be the playback duration of j blocks of data
for video stream i. Note that t,, is a random variable. Let
Fi, be the cumulative distribution function of ti,. Ft3 can
be pre-calculated (off-line and only once) from the stored
video data (timestamps) and the following two methods as
introduced previously. If the number of blocks fetched in
each cycle for each admitted stream is kept the same for
the entire duration of the call, then the fixed-displacement
window’ with width j can be used to calculate FtJ . On the
other hand, if the number of blocks fetched in each cycle
for each admitted call may change with time (upon call
admission and/or termination), then the running window
with width j can be used. For the latter case one may,
for example, apply the following method to obtain a con-
servative estimate of F2,. Assume that stream i contains
M blocks of data. Then, for each time threshold t : using
the running window scheme, M - j + 1 windows will be
examined and the number of windows in which the play-
back duration is less than or equal to t can be calculated.
Denote this number by IC. Then, is a conservative
estimate of Fi j (t) . Fij then can be stored at the beginning
of video stream i for admission control purposes. Let S, be
the allowable overdue probability (tolerable degree of star-
vation) for stream i. Other notation has been introduced
in the previous section.

Like the approach used to develop the ESAC algorithms,
using the information of the playback duration distribu-
tions, we formulate the PAC admission control problem as
the feasibility problem of System P5 shown below. If the
system has a solution, then admit the call(s); otherwise,
reject the call(s).

System P5:

lM/Ji

m

1 V i € I (16)
j € J L

Ti, = 0 or j Vi E l , j E J,.(17)

The left-hand-side of Constraint (14) is the overdue
probability for stream i. Constraint (14) requires that
for each stream i the overdue probability be no greater
than a given bound. Constraint (15) requires that the to-
tal amount of buffer allocated not exceed a given value
B. Constraints (16) and (17) require that for each stream
i E I exactly one particular number of blocks (chosen from
J i) are fetched from the disk array in one cycle.

To determine the feasibility of System P5, the following
polynomial-time algorithm similar to Algorithm A can be
applied.

Algor i thm B:
1. Set H to be a lower bound on the minimum buffer

requirement for System P5 to be feasible.

407

2. If H is greater than B , then report ”System P5 is
infeasible” arid stop.

3 . Fix the term E,, J r TkJ on the left-hand-side of
Constraint (14) to be H .

4. Find for each i t 1 the minimum (single) j E Ji
such that xjE~,, F F i , (A + H / K) 5 Si. Denote the
solution by { Tl> }.

5. Calculate H’ = zzEl xjEJ, T~:.
6. If H’ 5 H , then report ”System P5 is feasible” and

stop; otherwisc, increase H by 1 and. go to Step 2.

Algorithm B is similar to Algorithm A and is in general
not suitable for real-time applications. As in the case for
System P I , the following efficient heuristic algorithm is
therefore developed to determine the feasibility of System
P5.

Algorithm PAC-HEU:

1. Find for each i t I the minimum (single) j E Ji
such that E,,+ Y F i j (A + B / K) <(Si. Denote the

solution by {TiJ} .
2. Calculate B’ = ziEI C j E J , T,;.
3. If B’ 5 B, then admit the call(s); otherwise, reject

the calljs).

As discussed in the previous section, one might want to
minimize the buffcr requirement. The following property,
which is similar to Property 4, provides an efficient way to
calculate the optimal value of B.

P rope r ty 5: Assume System P5 is infeasible under a
given value of B, denoted by 6. Let B* be the optimal
value of B. Solve the following problem.

subject to:

(16), (17) and

Denote the optimal solution by {Tt;}.
xlEI >3,t,, Tz:,. Then, B < B’ 5 B*.

The proof for Property 5 is similar to that for Prop-
erty 4 and is therefore omitted. Based upon Property 5 ,
an efficient optimal algorithm to find the minimum buffer
requirement is developed and presented below.

Algorithm PAC-BM:

Let B‘ be

1. Choose a lower bound on the minimum buffer require-

2. Find for each i t I thc minimum (single) j such that
Y F i j (A + 8) 5 Si. Denote the solution by

ment as the initial value for B.

T

i c; I ’

3. Calculate B’ = zirI zJE J , T~;.
4. If B’ = B, then stop; otherwise, increase the value of

B to B’ and go to Step 2 .

The above result also immediately leads to the following
optimal real-time admission control algorithm.

Algorithm PAC-OPT:
1. Apply Algorithm PAC-BM to calculate the minimum

2. If B* 5 B, then admit the call(s); otherwise, reject

Two properties of the PAC schemes are given below.
First, when the tolerance of overdue probability S, be-
comes larger, the system becomes less restricted and poten-
tially higher system throughput/revenue can be achieved.
Second, when every Si is set to 0 such that the continu-
ity requirement shall be strictly satisfied, then the PAC
schemes become the ESAC schemes.

buffer requirement B*.

the call(s).

IV. SUMMARY
The VOD service has become popular. In order to pro-

vide satisfactory service to the subscribers and to niaxi-
mize the throughput of the system or the revenue of the
service provider, an efficient and effective admission con-
trol scheme is essential.

In this paper, we intend to improve the performance of
two existing admission control schemes, i.e. the strict ad-
mission control and the predictive admission control. In
the strict admission control scheme, the admission control
decision is made base upon the peak frame size so that the
continuity requirement is strictly satisfied. However, this
scheme in many cases is overly conservative, specially when
the frame sizes have a wide distribution. In the predic-
tive admission control scheme, for the purpose of achieving
higher throughput/revenue than .;he strict admission coil-
trol scheme, the strict continuity requirement is relaxed
and a pre-specified maximum data overdue probability is
tolerable. However, this scheme requires real-time traf-
fic measurement collection and analysis, and more impor-
tantly, cannot guarantee that the pmspecified data over-
due probability threshold be not ‘exceeded.

Two new admission control schemes are thus proposed
in this paper to improve the performance and to allevi-
ate the drawbacks of the aforementioned existing schemes.
They are the Enhanced Strict Admission Control (ESAC)
scheme and the Probabilistic Admission Control (PAC)
scheme. In the ESAC scheme, w’4 propose to use slightly
more statistics than the peak frame size of the stored video
information to achieve potentially much higher throughput
than the strict admission control scheme, where the conti-
nuity requirement is still strictly guaranteed. The statistics
data requircd for the implementation of the ESAC scheme
are of small amount and can be easily pre-calculated (off-
line and only once). In the PAC scheme, we propose to use
similar statistics as used in the 13SAC scheme to achieve
even higher throughput. Compared with the predictive ad-
mission control scheme, the PAC scheme does not require

408

real-time traffic measurement collection and analysis, and
can guarantee that the maximum allowable data overdue
probability be not exceeded.

The admission control problems are formulated as feasi-
bility problems of the corresponding systems of simultane-
ous equations. If the system has a feasible solution, then
admit the call(s); otherwise, reject the call(s). To deter-
mine the feasibility of the systems, we first identify special
properties of the systems, and then develop both heuristic
arid optimal real-time admission control algorithms. One
part of the optimal admission control algorithm can also
be used t,o calculate the minimum buffer requirement for
a given load. This optimal buffer management algorithm
can either be applied in the system design phase or on a
real-time basis for dynamic memory allocation due to its
high efficiency.

REFERENCES
D.P. Anderson, Y. Osawa and R. Govindan. A File System for
Cont,inuous Media. ACM Tranuactions on Computer Systems,
Vol. 11, No. 2 , May 1993.
D. Clark, S. Shenker and L. Zhang. Supporting Real-Time Ap-
plications in an Integrated Services Network: Architecture and
Mechanism. Proceedzngs of the ACM SIGCOMM, pages 14-26,
1992.
D. Le Gall. A Video Compression Standard for Multimedia
Applications. Communacations of the ACM, Vol. 34, No. 4,
pages 47-58, April 1991.
R. Handel, M.N. Huber, and S. Schruder. ATM Networks: Con-
cepts, Protocols, Applications, Addison-Wesley, 2nd Edition,
1994.
U Black. ATM: Foundation for Broadband Networks, Prentice
Hall) 1995.
M. Humphrey, J . Freeman and Paradyne Corporation. How
xUSL Supports Broadband Services to the Home. IEEE Net-
work Mayazane, Vol. 11, No. 1, pages 14-23, January/February
1997.
Institute of Electrical and Electronics Engineers, Inc. IEEE
Project 8O2.l4/a Draft 3 Reiiison 3, April 1998.
Cable Television Laboratories, Inc. Data- Over-Cable Service In-
terface Specifications - Radio Frequency Interface Specification,
October 1997.
M.W. Garrett. Contributions Towards Real-Time Services on
Packet-Switched Networks. Ph.D. Thesis, Columbia University,
March 1993.
A.D. Gleman, 13. Kobrinski, L.S. Smoot, S.B. Weinstein, Ivl.
Fortier and D. Lemay. A Store-And-Forward Architecture for
Video On Demand Service. Proceedings of the IEEE ICC’91,
1991.
A.D. Gelman, S. Halfin, Walter Willinger. On Buffer Require-
ments for St,ore-And-Forward Video On Demand Service Cir-
cuits. Proceedings of the IEEE GLOBECOM’SI, 1991.
A.D. Gelman and L.S. Smoot. An Architecture for Interactive
Applications. Proceedings of the IEEE ICC’93, 1993
L. De Giovanni, A.M. Langellotti, L.M. Patitucci and L. Petrini.
Dimensioning of Hierarchical Storage for Video on Demand Ser-
vices. Proceedings of th,e IEEE ICC’SL, 1994.
T.R. Hsing, C.T. Chen and J.A. Bellisio. Video Communica-
tions and Services in the Copper Loop. IEEE Communications
Magaine, January 1993.
S. Jamin, S. Shenker, L. Zhang and D.D. Clark. An Admission
Control Algorithm for Predictive Real-Time Service. Third In-
ternat7,onal Workshop on Network and Operating System Sup-
port for Digital Audio and Video, pages 349-356, November
1992.
P. Lougher and D. Shepherd. The Design and Implementa-
tion of a Continuous Media Storage Server. Third International
Worksh,op on Network and Operating System Support for Dig-
ilal Audio and Video, pages 69-80, November 1992.
R. Rarnarao, V. Ramamoorthy. Design of On-Demand Video
Delivery Systems: The Spatio-Temporal Storage Allocation
Problem. Proceedings of the IEEE ICC’91, 1991.

[18] P.V. Rangan and H.M. Vin. Designing File Systems for Digital
Video and Audio. Proceedzngs of the Thirteenth ACM Sympo-
sium on Operating Systems Principles, pages 81-94, 1991.

[19] P.V. Rangan, H.M. Vin and S. Ramanathan. Designing an On-
Demand Multimedia Service. IEEE Communzcations Magazzw,
Vol. 30, No. 7 , pages 56-65, July 1992.

[20] W.D. Sincoskie. Video on Demand: Is it, Feasible? Proceedzngs
of the IEEE GLOBECOM’90, 1990.

[all W.D. Sincoskie. System Architecture for a Large Scale Video
on Demand Service. Computer Networks and ISDN Systems,
Vol. 22, pages 155-162, 1991.

[22] L. Vaitzblit. The Design and Implementation of a High Band-
width File Service for Continuous Media. MIT Thesis, Septem-
ber 1991.

[23] H.M. Vin and P.V. Rangan. Admission Control Algorithms
for Multimedia-On-Demand Servers. Third Internatzonal Work-
shop on Network and Operating System Support for Dzgzl,al AZL-
dio and Video, pages 56-68, November 1992.

[24] Y.C. Lai, Y.D. Lin and H.Z. Lai. A Hierarchical Network Stor-
age Architecture for Video-on-Demand Services. IEEE Trans-
actions on Broadcasting, Vol. 43, No. 2 , pages 145-154, June
1997.

APPENDIX
In this appendix, a method to calculate Ji for each i t I

is proposed. The objective is to find for each stream i
the minimum set J , without changing the feasibility of the
problem.

The following property provides a lower bound on the
smallest element in each Ji.

Property A l : Find the minimum positive integer j such
that

(20)
j A + - < di,.
h’ ~

The result is a lower bound on the smallest element in J,.

Proof: (20) is the result of minimizing the buffer require-
ment subject to (1) where I is a singleton. It is clear that
if I is enlarged to contain any other element(s). the same
or larger j is required to satisfy (1). This completes the
proof.

Property A1 can also be used to calculate a lower bound
on the minimuin buffer requirement by summing up such
calculated lower bounds for individual streams. In addi-
tion, with the lower bound on the buffer requirement of
each stream i from the above property, denoted by B,; an
upper bound on the buffer requirement for each stream i
can also be calculated.

Property A2: For each stream i E I, B - Cktl,icf, Bk is
an upper bound on its buffer requirement.

