Urinary Tract Surgery - Recent Developments

Philipp Mayhew BVM&S, MRCVS, DACVS
Assistant Professor, Small animal surgery
University of California-Davis, USA
Lecture Format

+ Introduction
+ Urinary Tract Trauma and obstruction
 - uroperitoneum
 - catheter-associated trauma
+ Urolithiasis
 - minimally invasive urolith removal
 - feline ureterolithiasis
+ Urinary incontinence
 - new therapies for ureteral ectopia & urethral sphincter mechanism incompetence
Introduction

+ Many new urinary tract therapies have been introduced in the last few years
 - New options for previously untreatable conditions
 - Improvements of current standard of care
+ Minimally invasive approaches to many urinary problems now possible
 - Ureteral ectopia, trauma, urolithiasis, neoplasia
+ In our practice majority of urinary procedures now involve less invasive techniques compared to 10 years ago
Urinary Tract Trauma

Important considerations:
- Medical v. Surgical Emergency
- Site of urine leakage
- Underlying cause

Important consequences:
- Uroperitoneum/Uroretroperitoneum/Urinary leakage into tissues
- Urinary obstruction secondary to stricture formation
UROPERITONEUM - Etiology?

- Dogs and Cats – 84.6% trauma
 - In dogs → blunt trauma
 - In cats → 59% blunt trauma
 - 32% urethral catheterization
 - 9% bladder expression

- Other causes
 - Iatrogenic - post-cystotomy, nephrotomy
 - Rupture secondary to obstruction, neoplasia

- Location: ~70% bladder
 ~30% urethra
Diagnosis: uroperitoneum

- **Retrieve abdominal fluid by abdominocentesis**
- **Measure effusion and peripheral blood K and creatinine**
- **If slightly to markedly higher values in effusion → suggests uroperitoneum**

<table>
<thead>
<tr>
<th></th>
<th>Dog</th>
<th>Cat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatinine</td>
<td>5:1</td>
<td>2:1</td>
</tr>
<tr>
<td>Potassium</td>
<td>2.5:1</td>
<td>1.9:1</td>
</tr>
</tbody>
</table>

Imaging: Uroperitoneum

+ Positive contrast cytourethrogram – use FLUORO
 - Contrast study of choice for LT
 - Detected 100% bladder ruptures (only 72% with double contrast)
+ Intravenous urogram
 - If suspect renal/ureteral trauma
+ Antegrade pyelogram
+ Ultrasound ± contrast cystography (microbubble)
+ Computed tomography
Treatment: Bladder trauma

- Revision cystotomy
- Radical cystectomy

- Complications: pollakiuria, dysuria

- Gastro-intestinal conduit diversion

- Complications: pyelonephritis, renal failure

- Colonic augmentation cystoplasty
Colonic augmentation cystoplasty

Bladder neck necrosis

- **Technique for circumferential resection of bladder neck**
- **Involves sparing the dorsal vascular and neurological pedicles**
- **Requires bilateral ureteral reimplantation**
- **Mainly described for tumor resection**

Urethral trauma

- Most likely to be secondary to catheterization or pelvic trauma
- Can be full transection but more often tear
- In cats - tend to be mid-pelvic urethra
- Ideal repair of transection:
- Primary repair + catheter better than primary repair or catheter only in dogs (Layton CE et al. Vet Surg 1987;16:175-182)
- Anastomoses results in some degree of strictures
Algorithm to deal with Feline urethral tears

Urethral Tear

Distal
- Perineal urethrostomy
- Transpelvic urethrostomy

Intrapelvic

Proximal
- Retrograde or antegrade catheterisation
- Pelvic symphysiostomy/pubic-ischial osteotomy flap with primary repair

Prepubic urethrostomy

Intrabdominal repair

Cystostomy
Urethral Tear Options

+ Prepubic urethrostomy
 - many complications: incontinence (37%), peristomal dermatitis (44%).

+ Perineal urethrostomy
 - 0-18% stricture rate, predisposed to infection

+ Intrabdominal repair
 - For rare cases where tear is intrabdominal

+ Transpelvic urethrostomy
 - Same complications as PU
Transpelvic urethrostomy

- Gets you a little “higher”
- Allows access to 1-2cm cranial to the bulbourethral glands
- Few complications
- Assymptomatic stricture

Treatment by catheterization alone

+ In many cases urethral tears will heal if a catheter can be passed across the lesion
+ In ~50% of cases catheter will pass retrograde
+ If catheter doesn’t pass retrograde in many cases will pass antegrade
+ This can be done using guidewire from cystotomy incision
+ Leave catheter in place for 5-15 days
+ Post-operative stricture occurred in 2/10 cats in one study

Meige et al. Management of traumatic urethral rupture in 11 cats using primary alignment with a urethral catheter. VCOT 21: 76-84; 2008
Minimally invasive Retrograde/Antegrade catheterization

- IV catheter passed percutaneously into bladder
- Small soft hydrophilic wire (glide/weasel) passed through catheter into bladder
- Under fluoroscopic guidance wire passed into urethra and across lesion
- Then once out of penis can thread a locking loop or pigtail catheter over wire
Antegrade catheterization

Images and videos courtesy C. Weisse and A. Berent
Antegrade catheterization
UROLITHIASIS: NEW OPTIONS

- In human medicine limited role for traditional “open” surgery for urolithiasis

- Canine/feline cystic/urethral calculi
 - Laparoscopic-assisted cystotomy
 - Lithotripsy

- Ureterolithiasis (mainly feline)
 - Surgery
 - Ureteral stent placement
Laparoscopic-assisted Cystotomy

Advantages:
- Less post-operative pain
- Less wound-related complications
- Ability to thoroughly evaluate for residual stones

Disadvantages
- Greater equipment and cost
- More time-consuming
INSTRUMENTATION

- 5mm 0° or 30° laparoscope
- 2 trocar-cannula assemblies
- 5 or 10mm Grasping forceps
- 2.7mm cystoscope with cystoscopic sheath
- IV fluids with pressure bag
- Stone retrieval devices
Instrumentation: Stone retrieval devices

Many different devices can be used for stone retrieval once have bladder access:

- Placed alongside cystoscope:
 - Lap babcock
 - Carmalt forceps

- Placed down working channel of cystoscope:
 - Biopsy forceps
 - Basket catheter (different sizes)
Patient positioning and port placement

- **Dorsal recumbency**

- **Trendelenburg (head down)**

- **Camera portal is subumbilical**

- **Instrument portal will be located on ventral midline at level of bladder apex**

- **In males may be parapreputial**
Lap-assisted cystotomy: Surgical technique

- Laparoscope is inserted to view bladder
- Can fill bladder with sterile saline through catheter
- Second port established at level of bladder apex on midline
- 5 or 10mm Babcock forceps used to elevate bladder
- Stay sutures placed followed by cystotomy
- Cystoscope (1.9-2.7mm 30° degree cystoscope in sheath) placed into bladder

Rawlings CA et al. Use of laparoscopic-assisted cystoscopy for removal of urinary calculi in dogs. JAVMA 2003;222;759-762
Securing Bladder Access

+ Placing the stay sutures or suturing the edge of a cystotomy to the skin margin allows secure access for repeated entry into bladder
 - Very helpful when many stones
+ Cannula technique:
 - Provides closed bladder and best visualization
 - Tedious when many or large stones need to be removed
Recovering Urinary Calculi

- Can use Babcock forceps placed alongside telescope to recover individual stones
 - Works well for medium to large stones

- Can use basket catheter placed through working channel of cystoscope sheath
 - Works well for medium-sized stones
 - Depends on size of the basket
Retrograde flushing of stones through cystotomy
Post-operatively

- **Cystotomy incision is closed routinely**
- **Bladder is replaced into abdomen and inspected once more**
- **Purge pneumoperitoneum**
- **Close camera portal**
- **3 days of analgesia and dogs can usually return home the day after surgery**
Feline ureterolithiasis – A very common problem?

- Increasing numbers of upper tract stones
 - 10x↑ in upper tract stones in 20 years
 - 50x↑ in calcium oxalate in UT stones (Lekcharoensuk C et al. JAAHA 41;39-46,2005)

- Increasing prevalence of calcium oxalate over past 20 years (Ling GV et al. JVIM 1998;12:11-21)

- Historical findings non-specific:
 - Inappetence, vomiting, lethargy, weight loss
 - 83% of cats are azotemic
 - 25% of cats have bilateral ureterolithiasis
 - 62% of cats have concurrent nephroliths
Feline Ureterolithiasis - Diagnostic Imaging

- **Sensitivity of plain radiographs** 81%
- **Sensitivity of ultrasound** 77%
- **Sensitivity of both** 90%
- **Allows assessment of degree of hydronephrosis**
Feline ureterolithiasis - Other imaging modalities

Antegrade pyelography

Computed tomography
Ureterolithiasis - Medical Management

Medical treatment in cats:

- Serial monitoring
- IV fluids and diuretics (mannitol)
- Glucagon - side effects - no longer recommended
- Amitryptyline - no reports
- Ca channel blockers (nifedipine)
- Alpha-adrenergic antagonist (tamsulosin)
- Extracorporeal shockwave therapy - concerning results in cats but early stage of development
Does medical management work?

- **Humans:** 98% of ureteroliths <5mm will pass
- **Dogs:** little information on medical management
- **Cats:**
 - 64% serially assessed ureteroliths passed into bladder
 - 33% euthanased/died within a month

<table>
<thead>
<tr>
<th></th>
<th>6mo Survival</th>
<th>12mo Survival</th>
<th>24mo Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Surgical</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Ureterolithiasis - Indications for Surgery

Consider surgery if:
- obstruction present
- chronic infection present
- no important co-morbidities

Timing of surgery:
- dogs - acute obstruction
 renal blood flow 40% of control 12-24 hrs post
- dogs - chronic obstruction
 1 wk → GFR returns to 65% normal
 2 wk → GFR returnes to 46% normal
Ureterolithiasis - Surgical Management

- Consider location, severity of renal impairment
- If proximal
 → pyelotomy/ureterotomy
- If mid to distal
 → ureterotomy or ureterectomy with ureteroneocystostomy
- If end-stage hydronephrosis
 → ureteronephrectomy
- Renal transplantation if severe CRF and available
Ureterotomy - Single Large Stone

- Use magnification
- Gentle use of tourniquet proximal and distal to calculus
- Incise over single stone
- Suture with fine monofilament suture
Multiple ureteral calculi

- Commonly encountered - multiple calculi in one ureter or bilateral ureterolithiasis
- We now prefer ureteral stents to bypass obstruction
- Can be challenging to place but well tolerated
Nephrostomy Tube

+ Provides urine drainage temporarily
+ Can be used in conjunction with ureterotomy to try and decrease leakage
+ However not without complications
 - Post-op uroabdomen 25%
 - Post-op blockage/dislodgement 21%
+ Generally a move away from nephrostomy tubes in these cases
Ureteral Stenting

- Has been used for palliation of ureterolithiasis, strictures or malignancies
- Can be placed cystoscopically in dogs but in cats requires surgical placement
- Introduced through the kidney, dilator is used to dilate the ureter and then stent is placed over the guidewire into the bladder
- Double pigtail design is used
Ureteral Stenting

- **Intraoperative fluoroscopy (C-arm) is used to confirm placement of the pigtail in the renal pelvis**
- **Post-operative radiographs confirm placement and should be done sequentially to monitor for migration**
- **Can be placed bilaterally**
- **Left in long-term and well tolerated**
Urinary Incontinence

<table>
<thead>
<tr>
<th></th>
<th>Juvenile female</th>
<th>Adult female</th>
<th>Juvenile male</th>
<th>Adult male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ureteral Ectopia</td>
<td>47%</td>
<td>4%</td>
<td>34%</td>
<td>8%</td>
</tr>
<tr>
<td>USMI</td>
<td>33%</td>
<td>81%</td>
<td>41%</td>
<td>17%</td>
</tr>
<tr>
<td>UE and USMI</td>
<td>8%</td>
<td><1%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Other</td>
<td>12%</td>
<td>14%</td>
<td>25%</td>
<td>75%</td>
</tr>
</tbody>
</table>

N=481 female dogs

N=82 male dogs
Ureteral ectopia

+ Relatively common in many breeds
+ Traditionally treated by neoureterostomy for most intramural cases
+ True extramural cases are extremely rare but can be treated by ureteral implantation
+ Surgery has been main treatment to resolve incontinence and prevent progression of hydroureter and hydronephrosis
Literature - Diagnostic Imaging

- **IVU:** No association exists between the shape of the ureterovesicular junction and the surgical diagnosis of EU (Canizzo 2003).
 - Only 32% had double contrast used.

- **Retrograde vaginourethrogram:** EU were diagnosed in only 47% of dogs with the disease in one study using this modality (Samii 2004).

- **Abdominal ultrasonography:** User dependent and difficult to tell which side affected (Mantis 2008).

- **Contrast-enhanced CT:** Correct diagnosis of EU in 16 of 17 dogs (Samii et al. 2004).

- **Cystoscopy:** Diagnosed EU in 24 of 25 affected dogs (Cannizzo et al. 2003).
Neoureterocystostomy with distal ureteral tunnel ligation or excision (trigonal reconstruction)
Cystoscopic evaluation

+ 100% sensitivity and 75% specificity in a population of 24 dogs suspected of having EU. (Samii et al. 2004).
+ Combine with other modality that evaluates upper tract.
Cystoscopic laser ablation of ectopic ureters.

Images and videos courtesy A. Berent
CLA technique video
12 weeks post CLA of ectopic ureter
What is the post-operative incontinence rate for surgery versus CLA for EU

+ **Neoureterostomy with distal ureteral ligation**

+ **Neoureterostomy with distal tunnel excision (trigonal reconstruction)**
 - 71% remained incontinent (Mayhew 2006)

+ **CLA-EU technique**
 - 53-68% (Smith et al. 2009, A. Berent – personal communication).
Cystoscopic-guided collagen implantation
Hydraulic occluder placement
Any Questions?

Olympic National Park